SOLANACEAE LEAVES AS ARE SOURCES OF ANTIOXIDANTS AND VITAMIN D
Abstract and keywords
Abstract (English):
Coal miners work underground, which means they are likely to be at greater risk of developing Vitamin D deficiency due to reduced sunlight exposure. Other industrial health risks may include oxidative stress, respiratory diseases, and inflammatory pathologies. Leaves of nightshade plants are rich in antioxidants, which means they can prevent mining-related diseases, compensate for vitamin D deficiency, and counteract oxidative stress at the cellular level. The article describes the component composition of the leaves of various Solanaceae plants to be used in functional foods fortified with antioxidants and vitamin D. The research featured dried leaves of tomato (Solanum lycopersicum L.), potato (S. tuberosum L.), black nightshade (S. nigrum L.), and bittersweet nightshade (S. dulcamara L.). The antioxidant studies involved a comprehensive analysis of flavonoids, chlorophyll, carotenoids, and volatile organic compounds using ABTS and DPPH radicals. The vitamin D content was studied by high performance liquid chromatography. The leaves proved to be rich in flavonoids, chlorophyll, carotenoids, and volatile organic compounds. The high antioxidant potential was confirmed by ABTS and DPPH tests. The highest content of vitamin D belonged to potato leaves (224.7 μg/100 g) and black nightshade (22.8 μg/100 g), demonstrating good prospects for food fortification. The high antioxidant content in the leaves of tomato, potato, black nightshade, and bittersweet nightshade makes them a promising raw material for the functional food industry. They may be able to improve the health of miners and prevent industrial diseases.

Keywords:
Antioxidant activity, vitamin D, flavonoids, chlorophyll, carotenoids, volatile organic compounds, Solanum, tomato, potato, nightshade
References

1. Martelli M, Salvio G, Santarelli L, Bracci M. Shift work and serum vitamin D levels: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health. 2022;19(15):8919. https://doi.org/10.3390/ ijerph19158919

2. Dash S, Gupta S, Epari V, Patra PY. Association of vitamin D levels in coal miners: A case-control study. Indian Journal of Community Medicine. 2020;45(2):181–183. https://doi.org/10.4103/ijcm.IJCM_269_19

3. Pichkhadze GM, Shalygin AE, Zubtsov YuN. Energy needs of open-pit coal miners. Problems of Nutrition. 1987;6:33–35. (In Russ.)

4. Soboleva OA, Minina VI, Torgunakova AV, Titov RA, Yakovleva AA, et al. Vitamin D status in connection with VDR and GC genes polymorphism in coal mining workers. Problems of Nutrition. 2024;93(4):74–83. (In Russ.) https://doi.org/10.33029/0042-8833-2024-93-4-74-83

5. Batool AI, Naveed NH, Aslam M, da Silva J, ur Rehman MF. Coal dust-induced systematic hypoxia and redox imbalance among coal mine workers. ACS Omega. 2020;5(43):28204–28211. https://doi.org/10.1021/acsomega.0c03977

6. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology. 2021;12:643972. https://doi.org/10.3389/fphar.2021.643972

7. Chen H, Ding X, Zhang W, Dong X. Coal mining environment causes adverse effects on workers. Frontiers in Public Health. 2024;12:1368557. https://doi.org/10.3389/fpubh.2024.1368557

8. Petsonk EL, Rose C, Cohen R. Coal mine dust lung disease. New lessons from old exposure. American Journal of Respiratory and Critical Care Medicine. 2013;187(11):1178–1185. https://doi.org/10.1164/rccm.201301-0042CI

9. Ferguson JM, Costello S, Elser H, Neophytou AM, Picciotto S, et al. Chronic obstructive pulmonary disease mortality: The diesel exhaust in miners study (DEMS). Environmental Research. 2020;180:108876. https://doi.org/10.1016/ j.envres.2019.108876

10. Alter P, Baker JR, Dauletbaev N, Donnelly LE, Pistenmaa C, et al. Update in chronic obstructive pulmonary disease 2019. American Journal of Respiratory and Critical Care Medicine. 2020;202(3):348–355. https://doi.org/10.1164/ rccm.202002-0370UP

11. Milanzi EB, Gehring U. Detrimental effects of air pollution on adult lung function. European Respiratory Journal. 2019;54(1):1901122. https://doi.org/10.1183/13993003.01122-2019

12. Koudasheva AR, Yakupov RR. Osteopenia problem in workers engaged into mining industry. Russian Journal of Occupational Health and Industrial Ecology. 2011;(8):27–29. (In Russ.) https://elibrary.ru/OCBBGF

13. Nasonov EL. Infliximab in modern pharmacotherapy strategies of rheumatoid arthritis. Consilium Medicum. 2006;8(8):5–9. (In Russ.) https://elibrary.ru/RLSWBP

14. Fokina AD, Vesnina AD, Frolova AS, Chekushkina DYu, Proskuryakova LA, et al. Bioactive anti-aging substances: Geroprotectors. Food Processing: Techniques and Technology. 2024;54(2):423–435. (In Russ.) https://doi.org/10.21603/2074-9414-2024-2-2517

15. Faskhutdinova ER, Sukhikh AS, Le VM, Minina VI, Khelef MEA, et al. Effects of bioactive substances isolated from Siberian medicinal plants on the lifespan of Caenorhabditis elegans. Foods and Raw Materials. 2022;10(2):340–352. https://doi.org/10.21603/2308-4057-2022-2-544

16. Maury GL, Rodríguez DM, Hendrix S, Arranz JCE, Boix YF, et al. Antioxidants in plants: A valorization potential emphasizing the need for the conservation of plant biodiversity in Cuba. Antioxidants. 2020;9(11):1048. https://doi.org/10.3390/ antiox9111048

17. Pérez-Gálvez A, Viera I, Roca M. Carotenoids and chlorophylls as antioxidants. Antioxidants. 2020;9(6):505. https:// doi.org/10.3390/antiox9060505

18. Kim M-H, Lee S-M, An K-W, Lee M-J, Park D-H. Usage of natural volatile organic compounds as biological modulators of disease. International Journal of Molecular Sciences. 2021;22(17):9421. https://doi.org/10.3390/ijms22179421

19. Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. Journal of Nutritional Science. 2016;5:e47. https:// doi.org/10.1017/jns.2016.41

20. Ullah A, Munir S, Badshah SL, Khan N, Poulson BG, et al. Important flavonoids and their role as a therapeutic agent. Molecules. 2020;25(22):5243. https://doi.org/10.3390/molecules25225243

21. Dias MC, Pinto DCGA, Silva AMS. Plant flavonoids: Chemical characteristics and biological activity. Molecules. 2021;26(17):5377. https://doi.org/10.3390/molecules26175377

22. Mattioli V, Zanolin ME, Cazzoletti L, Bono R, Cerveri I. Dietary flavonoids and respiratory diseases: A populationbased multi-case-control study in Italian adults. Public Health Nutrition. 2020;23(14):2548–2556. https://doi.org/10.1017/ S1368980019003562

23. Rees A, Dodd GF, Spencer JPE. The effects of flavonoids on cardiovascular health: A review of human intervention trials and implications for cerebrovascular function. Nutrients. 2018;10(12):1852. https://doi.org/10.3390/nu10121852

24. Li R-L, Wang L-Y, Liu S, Duan H-X, Zhang Q, et al. Natural flavonoids derived from fruits are potential agents against atherosclerosis. Frontiers in Nutrition. 2022;9:862277. https://doi.org/10.3389/fnut.2022.862277

25. Martiniakova M, Babikova M, Mondockova V, Blahova J, Kovacova V, et al. The role of macronutrients, micronutrients and flavonoid polyphenols in the prevention and treatment of osteoporosis. Nutrients. 2022;14(3):523. https://doi.org/10.3390/ nu14030523

26. Xiong H-H, Lin S-Y, Chen L-L, Ouyang K-H, Wang W-J. The interaction between flavonoids and intestinal microbes: A review. Foods. 2023;12(2):320. https://doi.org/10.3390/foods12020320

27. Martins T, Barros AN, Rosa E, Antunes L. Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review. Molecules. 2023;28(14):5344. https://doi.org/10.3390/molecules28145344

28. Crupi P, Faienza MF, Naeem MY, Corbo F, Clodoveo ML, et al. Overview of the potential beneficial effects of carotenoids on consumer health and well-being. Antioxidants. 2023;12(5):1069. https://doi.org/10.3390/antiox12051069

29. Ebrahimi P, Shokramraji Z, Tavakkoli S, Mihaylova D, Lante A. Chlorophylls as natural bioactive compounds existing in food by-products: A critical review. Plants. 2023;12(7):1533. https://doi.org/10.3390/plants12071533

30. Johra FT, Bepari AK, Bristy AT, Reza HM. A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease. Antioxidants. 2020;9(11):1046. https://doi.org/10.3390/antiox9111046

31. Lenis-Rojas OA, Robalo MP, Tomaz AI, Carvalho A, Fernandes AR, et al. RuII(p-cymene) compounds as effective and selective anticancer candidates with no toxicity in vivo. Inorganic Chemistry. 2018;57(21):13150–13166. https://doi.org/https://doi.org/10.1021/acs.inorgchem.8b01270

32. Du Y, Luan J, Jiang RP, Liu J, Ma Y. Myrcene exerts anti-asthmatic activity in neonatal rats via modulating the matrix remodeling. International Journal of Immunopathology and Pharmacology. 2020;34:1–10. https://doi.org/10.1177/2058738420954948

33. Kriger OV, Shepel EI. The effect of the preparation method on the content of biologically active substances and antimicrobial activity of extracts of marigold flowers (Tagetes patula L.). Food Metaengineering. 2024;2(2);22–34. (In Russ.) https://doi.org/10.37442/fme.2024.2.49

34. Oganesyants LA, Panasyuk AL, Kuzmina EI, Sviridov DA, Ganin MYu, et al. Isotope mass spectrometry as a tool for identifying organic tomatoes (Solanum lycopersicum L.). Food Processing: Techniques and Technology. 2023;53(3):612–620. (In Russ.) https://doi.org/10.21603/2074-9414-2023-3-2461

35. Wang C, Li M, Duan X, Abu-Izneid T, Rauf A, et al. Phytochemical and nutritional profiling of tomatoes; Impact of processing on bioavailability – A comprehensive review. Food Reviews International. 2022;39(8):5986–6010. https://doi.org/https://doi.org/10.1080/87559129.2022.2097692

36. Jäpelt RB, Silvestro D, Smedsgaard J, Jensen PE, Jakobsen J. Quantification of vitamin D3 and its hydroxylated metabolites in waxy leaf nightshade (Solanum glaucophyllum Desf.), tomato (Solanum lycopersicum L.) and bell pepper (Capsicum annuum L.). Food Chemistry. 2012;138(2–3):1206–1211. https://doi.org/10.1016/j.foodchem.2012.11.064

37. Aburjai T, Al-Khalil S, Abuirjeie M. Vitamin D3 and its metabolites in tomato, potato, egg plant and zucchini leaves. Phytochemistry. 1998;49(8):2497–2499. https://doi.org/10.1016/S0031-9422(98)00246-5

38. Chen X, Dai X, Liu Y, Yang Y, Yuan L, et al. Solanum nigrum Linn.: An insight into current research on traditional uses, phytochemistry, and pharmacology. Frontiers in Pharmacology. 2022;13:918071. https://doi.org/10.3389/fphar.2022.918071

39. Ostreikova TO, Kalinkina OV, Bogomolov NG, Chernykh IV. Glycoalkaloids of plants in the family Solanaceae (nightshade) as potential drugs. Pharmaceutical Chemistry Journal. 2022;56(7):948–957. https://doi.org/10.1007/s11094- 022-02731-x

40. Kuzmichova NA. Phytochemical analysis of fenugreek seeds. Pharmacy Bulletin. 2017;(2):23–31. (In Russ.) https://elibrary.ru/ ZEWGHF

41. Butnariu M. Methods of analysis (extraction, separation, identification and quantification) of carotenoids from natural products. Journal of Ecosystem & Ecography. 2016;6(2):100193 https://doi.org/10.4172/2157-7625.1000193

42. Rabotyagov VD, Paliy AE, Fedotova IA. Study of biologically active substances of Lavandula x intermedia emeric ex Loisel. Bulletin of SNBG. 2018;(126):55–61. (In Russ.) https://doi.org/10.25684/NBG.boolt.126.2018.08

43. Vorobeva EE, Minina VI, Soboleva OA, Milentyeva IS, Neverova OA. Creation of a functional curd product with the addition of non-traditional raw materials. Proceedings of the Voronezh State University of Engineering Technologies. 2022;84(4):80–88. (In Russ.) https://doi.org/10.20914/2310-1202-2022-4-80-88

44. Lakshmidevi N, Priyadarshini MR. Evaluation of phytochemicals and validation of antioxidant potential of wild solanum species from Mysore District, Karnataka, India. International Journal of Pharmacy and Biological Sciences-IJPBSTM. 2022;12(4):141–155.

45. Nawrocka J, Szymczak K, Skwarek-Fadecka M, Małolepsza U. Toward the analysis of volatile organic compounds from tomato plants (Solanum lycopersicum L.) treated with Trichoderma virens or/and Botrytis cinerea. Cells. 2023;12(9): 1271. https://doi.org/10.3390/cells12091271

46. Arafa RA, Kamel SM, Taher DI, Solberg SØ, Rakha MT. Leaf extracts from resistant wild tomato can be used to control late blight (Phytophthora infestans) in the cultivated tomato. Plants. 2022;11(14):1824. https://doi.org/10.3390/ plants11141824

47. Agho CA, Runno-Paurson E, Tähtjärv T, Kaurilind E, Niinemets Ü. Variation in leaf volatile emissions in potato (Solanum tuberosum) cultivars with different late blight resistance. Plants. 2023;12(11):2100. https://doi.org/10.3390/plants 12112100

48. Cara N, Piccoli PN, Bolcato L, Marfil CF, Masuelli RW. Variation in the amino acids, volatile organic compounds and terpenes profiles in induced polyploids and in Solanum tuberosum varieties. Phytochemistry. 2020;180:112516. https://doi.org/10.1016/j.phytochem.2020.112516

49. Aburjai TA, Oun IM, Auzi AA, Hudaib MM. Volatile oil constituents of fruits and leaves of Solanum nigrum L. growing in Libya. Journal of Essential Oil-Bearing Plants. 2014;17(3):397–404. https://doi.org/10.1080/0972060X.2014.895194

50. Yamashita H. Biological function of acetic acid-improvement in obesity and glucose tolerance by acetic acid in type 2 diabetic rats. Critical Reviews in Food Science and Nutrition. 2016;56(1):171–175. https://doi.org/10.1080/10408398. 2015.1045966

51. Cortesia C, Vilchèze C, Bernut A, Contreras W, Gómez K, et al. Acetic acid, the active component of vinegar, is an effective tuberculocidal disinfectant. mBio. 2014;5(2):e00013-14. http://dx.doi.org/10.1128/mBio.00013-14

52. Seki T, Morimura S, Tabata S, Tang Y, Shigematsu T, et al. Antioxidant activity of vinegar produced from distilled residues of the Japanese liquor shochu. Journal of Agricultural and Food Chemistry. 2008;56(10):3785–3790. https://doi.org/https://doi.org/10.1021/jf073040w

53. Masyita A, Mustika SR, Dwi AA, Yasir B, Rumata NR, et al. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry: X. 2022;13:100217. https://doi.org/10.1016/j.fochx.2022.100217

54. Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MdA, et al. Phytol: A review of biomedical activities. Food and Chemical Toxicology. 2018;121:82–94. https://doi.org/10.1016/j.fct.2018.08.032

55. Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan Ch, et al. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chemical Biology & Drug Design. 2012;80(3):434–439. https://doi.org/https://doi.org/10.1111/j.1747-0285.2012.01418.x

56. Bermúdez MA, Pereira L, Fraile C, Valerio L, Balboa MA, et al. Roles of palmitoleic acid and its positional isomers, hypogeic and sapienic acids, in inflammation, metabolic diseases and cancer. Cells. 2022;11(14):2146. https://doi.org/https://doi.org/10.3390/cells11142146

57. Takahashi H, Kamakari K, Goto T, Hara H, Mohri S, et al. 9-Oxo-10(E),12(Z),15(Z)-octadecatrienoic acid activates peroxisome proliferator-activated receptor α in Hepatocytes. Lipids. 2015;50(11):1083–1091. https://doi.org/10.1007/ s11745-015-4071-3

58. Zhong N, Han P, Wang Y, Zheng C. Associations of polyunsaturated fatty acids with cardiovascular disease and mortality: A study of NHANES database in 2003–2018. BMC Endocrine Disorders. 2023;23(1):185. https://doi.org/10.1186/ s12902-023-01412-4

59. Li L, Wang P, Jiao X, Qin S, Liu Zh, et al. Fatty acid esters of hydroxy fatty acids: A potential treatment for obesity-related diseases. Obesity Reviews. 2024;25(6):e13735. https://doi.org/10.1111/obr.13735

60. Młynarska E, Hajdys J, Czarnik W, Fularski P, Leszto K, et al. The role of antioxidants in the therapy of cardiovascular diseases – A literature review. Nutrients. 2024;16(16):2587. https://doi.org/10.3390/nu16162587

61. Taie H, Abd-Alla HI, Ali S, Aly HH. Chemical composition and biological activities of two Solanum tuberosum cultivars grown in Egypt. International Journal of Pharmacy and Pharmaceutical Sciences. 2015;7(6):311–320.

62. Lee KJ, Lee G-A, Ma K-H, Raveendar S, Cho Y-H, et al. Chemical constitutions and antioxidant activities of tomato leaf extracts. Plant Breeding and Biotechnology. 2016;4:362–372. https://doi.org/10.9787/PBB.2016.4.3.362

63. Kudale S, Ghatge S, Shivekar A, Sule C, Desai N. Comparative study of antioxidant potential in hairy roots and field grown roots of Solanum nigrum L. International Journal of Current Microbiology and Applied Sciences. 2016;5(8):42–54. http://dx.doi.org/10.20546/ijcmas.2016.508.005

64. Vázquez-Lorente H, Herrera-Quintana L, Jiménez-Sánchez L, Fernández-Perea B, Plaza-Diaz J. Antioxidant functions of vitamin D and CYP11A1-derived vitamin D, tachysterol, and lumisterol metabolites: Mechanisms, clinical implications, and future directions. Antioxidants. 2024;13(8):996. https://doi.org/10.3390/antiox13080996

65. Brancaccio M, Mennitti C, Cesaro A, Fimiani F, Vano M, et al. The biological role of vitamins in athletes’ muscle, heart and microbiota. International Journal of Environmental Research Public Health. 2022;19(3):1249. https://doi.org/10.3390/ ijerph19031249


Login or Create
* Forgot password?