Характеристика антиоксидантной активности СО2- экстрактов бурых водорослей и стабилизации липидов
Аннотация и ключевые слова
Аннотация (русский):
Одной из основных проблем сохранения качества растительных масел при хранении является их подверженность окислению, что представляет собой определенную проблему, влияющую, в частности, на срок годности и безопасность. Цель работы заключалась в оценке антиоксидантных свойств сверхкритических экстрактов из бурых водорослей Дальневосточного региона Undaria pinnatifida и Costaria costata и изучении возможности их использования в качестве стабилизирующего агента для сохранения качества и безопасности пищевых растительных масел путем исследования влияния на кинетику окисления и гидролиза. Объектами исследования являлись сверхкритические экстракты морских бурых водорослей Дальневосточного региона U. pinnatifida и C. costata. Использовались современные методы исследования – спектрофотометрический, высокоэффективная жидкостная хроматография. Экспериментально доказано, что сверхкритические экстракты морских бурых водорослей Дальневосточного региона U. pinnatifida и C. costata являются источниками биоактивных веществ, таких как фенольные соединения, каротиноиды, маннит и характеризуются высоким уровнем проявления антиоксидантных свойств в части антирадикальной активности и эффективности, гидроксил-ион связывающей активности, активности поглощения супероксидных радикалов и Fe+2 хелатирующей активности. Фенольные соединения, обуславливающие проявление антиоксидантных свойств представлены 9 веществами. Сверхкритический экстракт морской бурой водоросли C. costata продемонстрировал более высокий уровень проявления антиоксидантных свойств, чем экстракт U. pinnatifida. Сверхкритический экстракт морской бурой водоросли C. costata проявляет более выраженное антиоксидантное влияние на окислительные процессы липидов в растительных маслах в сравнении с экстрактом U. pinnatifida. Стабилизация процессов гидролиза сверхкритическими экстрактами морских бурых водорослей U. pinnatifida и C. costata также является эффективной и позволяет увеличить срок хранения масел на 3 мес. Использование сверхкритических экстрактов морских бурых водорослей Дальневосточного региона U. pinnatifida и C. costata как антиоксидантов для стабилизации окисления липидов эффективно как для рафинированных, так и для нерафинированных растительных масел (соевого и подсолнечного). Полученные уравнения регрессии, описывающие закономерности изменения перекисного и кислотного чисел растительных масел стабилизированных сверхкритическими экстрактами морских бурых водорослей Дальневосточного региона U. pinnatifida и C. costata, характеризуются высокими коэффициентами аппроксимации.

Ключевые слова:
Бурые водоросли, Undaria pinnatifida, Costaria costata, сверхкритические экстракты, антиоксиданты, растительные масла, окисление, гидролиз
Список литературы

1. Machado M, Rodriguez-Alcalá LM, Gomes AM, Pintado M. Vegetable oils oxidation: mechanisms, consequences and protective strategies. Food Reviews International. 2023;39(7):4180–4197. https://doi.org/10.1080/87559129.2022.2026378

2. Siddiq A, Ambreen G, Hussain K, Baig SG. Oxidative stress and lipid per-oxidation with repeatedly heated mix vegetable oils in different doses in comparison with single time heated vegetable oils. Pakistan Journal of Pharmaceutical Sciences. 2019;32(5):2099–2105.

3. Nguyen KA, Hennebelle M, van Duynhoven JPM, Dubbelboer A, Boerkamp VJP, Wierenga PA. Mechanistic kinetic modelling of lipid oxidation in vegetable oils to estimate shelf-life. Food Chemistry. 2024;433:137266. https://doi.org/10.1016/j.foodchem.2023.137266

4. Chen X-W, Li X-X, Hu Q-H, Sun S-D, Wan Z-L. Multifactorial revealing the association between components and lipid oxidation of edible vegetable oils in bulk and emulsion systems. LWT. 2023;183:114909. https://doi.org/10.1016/j.lwt.2023.114909

5. Machado SA, Da Rós PCM, de Castro HF, Giordani DS. Hydrolysis of vegetable and microbial oils catalyzed by a solid preparation of castor bean lipase. Biocatalysis and Agricultural Biotechnology. 2021;37:102188. https://doi.org/10.1016/j.bcab.2021.102188

6. Jaarin K, Kamisah Y. Lipid peroxidation. In: Catala A, editor. Repeatedly Heated Vegetable Oils and Lipid Peroxidation. Argentina: Universidad Nacional de La Plata; 2012. pp.211–228. https://doi.org/10.5772/46076

7. Зубова Е. В., Шамина Е. И. Влияние антиоксидантов на качество и хранение растительных масел // Вестник нижегородской государственной сельскохозяйственной академии. 2017. № 1. С. 42–46. https://www.elibrary.ru/YSGUZZ

8. Averyanova EV, Shkolnikova MN, Chugunova OV. Antioxidant properties of triterpenoids in fat-containing products. Food Processing: Techniques and Technology. 2022;52(2):233–243. (In Russ.). https://doi.org/10.21603/2074-9414-2022-2-2358; https://www.elibrary.ru/OZYTYK

9. Nechaev AP, Samoylov AV, Bessonov VV, Nikolaeva YuV, Tarasova VV, Pilipenko OV. Influence of antioxidants in native and micelled forms on the shelf life of the emulsion fat product. Problems of Nutrition. 2020;89(5):101–109. (In Russ.). https://doi.org/10.24411/0042-8833-2020-10070; https://www.elibrary.ru/WWGVZA

10. Timakova RT. Study of the effect of medicinal and technical raw materials of antioxidant orientation on the storage capacity of sunflower oil. XXI Century: Resumes of the Past and Challenges of the Present Plus. 2021;10(10):161–164. (In Russ.). https://doi.org/10.46548/21vek-2021-1053-0029; https://www.elibrary.ru/TTQQNA

11. Oleynikov VV. Antioxidant and antimicrobial properties of oregano extract (Origani vulgaris herba L.). Foods and Raw Materials. 2020;8(1):84–90. http://doi.org/10.21603/2308-4057-2020-1-84-90; https://www.elibrary.ru/WORGNQ

12. Wang W, Xiong P, Zhang H, Zhu Q, Liao C, Jiang G. Analysis, occurrence, toxicity and environmental health risks of synthetic phenolic antioxidants: A review. Environmental Research. 2021;201:111531. https://doi.org/10.1016/j.envres.2021.111531

13. Righi F, Pitino R, Manuelian CL, Simoni M, Quarantelli A, De Marchi M, Tsiplakou E. Plant Feed Additives as Natural Alternatives to the Use of Synthetic Antioxidant Vitamins on Poultry Performances, Health, and Oxidative Status: A Review of the Literature in the Last 20 Years. Antioxidants. 2021;10(5):659. https://doi.org/10.3390/antiox10050659

14. Olajide TM, Rahman MdRT, Lou Z, Qi J. Natural or Synthetic Antioxidants in Foods. In: Goyal MR, Suleria HAR, editors. Human Health Benefits of Plant Bioactive Compounds. New York: Apple Academic Press; 2019. pp. 55–65. https://doi.org/10.1201/9780429457913

15. Uwineza PA, Waśkiewicz A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules. 2020;25(17):3847. https://doihttps://doi.org/10.3390/molecules25173847

16. Gallego R, Bueno M, Herrero M. Sub-and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae–An update. TrAC Trends in Analytical Chemistry. 2019;116:198–213. https://doi.org/10.1016/j.trac.2019.04.030

17. Urbonavičienė D, Bobinas Č, Bobinaitė R, Raudonė L, Trumbeckaitė S, Viškelis J, et al. Composition and antioxidant activity, supercritical carbon dioxide extraction extracts, and residue after extraction of biologically active compounds from freeze-dried tomato matrix. Processes. 2021;9(3):467. https://doi.org/10.3390/pr9030467

18. Pimentel-Moral S, Borrás-Linares I, Lozano-Sánchez J, Arráez-Román D, Martínez-Férez A, Segura-Carretero A. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. The Journal of Supercritical Fluids. 2019;147:213–221. https://doi.org/10.1016/j.supflu.2018.11.005

19. Ostolski M, Adamczak M, Brzozowsk B, Wiczkowski W. Antioxidant activity and chemical characteristics of supercritical CO2 and water extracts from willow and poplar. Molecules. 2021;26(3):545. https://doi.org/10.3390/molecules26030545

20. Jelani ANA, Azlan A, Khoo HE, Razman MR. Fatty acid profile and antioxidant properties of oils extracted from dabai pulp using supercritical carbon dioxide extraction. International Food Research Journal. 2019; 26(5):1587–1598.

21. Gong T, Liu S, Wang H, Zhang M, Supercritical CO2 fluid extraction, physicochemical properties, antioxidant activities and hypoglycemic activity of polysaccharides derived from fallen Ginkgo leaves. Food Bioscience. 2021;42:101153. https://doi.org/10.1016/j.fbio.2021.101153

22. Muangrat R, Jirarattanarangsri W. Physicochemical properties and antioxidant activity of oil extracted from Assam tea seeds (Camellia sinensis var. assamica) by supercritical CO2 extraction. Journal of food processing and preservation. 2020;44(3): e14364. http://dx.doi.org/10.1111/jfpp.14364

23. Silva A, Rodrigues C, Garcia-Oliveira P, Lourenço-Lopes C, Silva SA, Garcia-Perez P, et al. Screening of bioactive properties in brown algae from the northwest iberian peninsula. Foods. 2021;10(8):1915. https://doi.org/10.3390/foods10081915

24. Tabakaev AV, Tabakaeva OV, Piekoszewski W, Kalenik TK, Poznyakovsky VM. Antioxidant properties of edible sea weed from the Northern Coast of the Sea of Japan. Foods and Raw Materials. 2021;9(2):262–270. https://doi. org/10.21603/2308-4057-2021-2-262-270

25. Rajauria G. In-vitro antioxidant properties of lipophilic antioxidant compounds from 3 brown seaweed. Antioxidants. 2019;8(12):596. https://doi.org/10.3390/antiox8120596

26. Aminina NM, Karaulova EP, Vishnevskaya TI, Yakush EV, Kim YK, Nam KH, et al. Characteristics of polyphenolic content in brown algae of the Pacific Coast of Russia. Molecules. 2020;25(17):3909. https://doi.org/10.3390/molecules25173909

27. Remya RR, Samrot AV, Kumar SS, Mohanavel V, Karthick A, Chinnaiyan VK, et al. Bioactive potential of brown algae. Adsorption Science and Technology. 2022;1–13. https://doi.org/10.1155/2022/9104835

28. Alloyarova YuV, Kolotova DS, Derkach SR. Nutritional and therapeutic potential of functional components of brown seaweed: A review. Foods and Raw Materials. 2024;12(2):398–419. https://doi.org/10.21603/ 2308-4057-2024-2-616

29. Сапожников Д. И. Пигменты пластид зеленых растений и методы их исследования, Москва: Наука, 1964, 129 с.

30. Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology. 2004;26(2):211–219.

31. Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 1989;28:1057–1060. https://doi.org/10.1016/0031-9422(89)80182-7

32. Ruch RJ, Cheng, S-J, Klaunig JE. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis. 1989;10:1003–1008. https://doi.org/10.1093/carcin/10.6.1003

33. Patel DS, Shah PB, Managoli NB. Evaluation of in-vitro antioxidant and free radical scavenging activities of Withania somnifera and Aloe vera. Asian Journal of Pharmacy and Technology. 2012;2(4):143–147.

34. Tabakaeva OV, Tabakaev AV. Supercritical extract from the Japanese sea brown algae Undaria pinnatifida as a source of bioactive compounds. Proceedings of Universities. Applied Chemistry and Biotechnology. 2023; 13(3):416–424. (In Russ.). https://doi.org/10.21285/2227-2925-2023-13-3-416-424; https://www.elibrary.ru/JRWASG

35. Lee CH, Park YN, Lee SG. Analysis and comparison of bioactive compounds and total antioxidant capabilities of Korean brown algae. Korean Journal of Food Science and Technology. 2020;52(1):54–59. https://doi.org/10.9721/KJFST.2020.52.1.54

36. Naveen J, Baskaran R, Baskaran V. Profiling of bioactives and in vitro evaluation of antioxidant and antidiabetic property of polyphenols of marine algae Padina tetrastromatica. Algal Research. 2021;55:102250. https://doi.org/10.1016/j.algal.2021.102250

37. Hodhodi A, Babakhani A, Rostamzad H. Effect of different extraction conditions on phlorotannin content and antioxidant activity of extract from brown algae (Sargassum angustifolium). Journal of Food Processing and Preservation. 2022;46(3):e16307. https://doi.org/10.1111/jfpp.16307

38. Heffernan N, Brunton N P, FitzGerald RJ, Smyth TJ. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Marine Drugs. 2015;13(1),509–528. https://doi.org/10.3390/md13010509

39. Agregán R, Munekata PES, Franco D, Dominguez R, Carballo J, Lorenzo JM. Phenolic compounds from three brown seaweed species using LC-DAD–ESI-MS/MS. Food Research International. 2017;99:979–985. https://doi.org/10.1016/j.foodres.2017.03.043

40. Zolotariova YeK, Mokrosnop VM, Stepanov SS. Polyphenol compounds of macroscopic and microscopic algae. International Journal on Algae. 2019;21(1):5–24. https://doihttps://doi.org/10.1615/InterJAlgae.v21.i1.10

41. Sanger G, Wonggo D, Montolalu LADY, Dotulong V. Pigments constituents, phenolic content and antioxidant activity of brown seaweed Sargassum sp. Conference Series: Earth and Environmental Science. 2022;1033(1):012057. https://doi.https://doi.org/10.1088/1755-1315/1033/1/012057

42. Tabakaeva OV, Tabakaev AV. Carotenoid profile and antiradical properties of brown seaweed Sargassum miyabei extracts. Chemistry of Natural Compounds. 2019;55:364–366. https://doi.org/10.1007/s10600-019-02692-w

43. Fomenko SE, Kushnerova NF, Sprygin VG, Drugova ES, Lesnikova LN, Merzlyakov VYu, et al. Lipid composition, content of polyphenols, and antiradical activity in some representatives of marine algae. Russian Journal of Plant Physiology. 2019;66:942–949. https://doi.org/10.1134/S1021443719050054

44. Balasubramaniam V, June Chelyn L, Vimala S, Mohd Fairulnizal MN, Brownlee IA, Amin I. Carotenoid composition and antioxidant potential of Eucheuma denticulatum, Sargassum polycystum and Caulerpa lentillifera. Heliyon. 2020;6(8):e04654. https://doi.org/10.1016/j.heliyon.2020.e04654

45. Gómez I, Huovinen P. Brown algal phlorotannins: an overview of their functional roles. In: Gómez I, Huovinen P, editors. Antarctic seaweeds: Diversity, adaptation and ecosystem services. Cham: Springer; 2020. pp. 365–388. https://doi.org/10.1007/978-3-030-39448-6_18

46. Ummat V, Tiwari BK, Jaiswal AK, Condon K, Garcia-VaqueroM, O`Doherty J. Optimisation of ultrasound frequency, extraction time and solvent for the recovery of polyphenols, phlorotannins and associated antioxidant activity from brown seaweeds. Marine Drugs. 2020;18(5):250. https://doi.org/10.3390/md18050250

47. Zheng H, Zhao Y, Guo L. A bioactive substance derived from brown seaweeds: Phlorotannins. Marine Drugs. 2022;20(12):742. https://doi.org/10.3390/md20120742

48. Farvin KHS, Surendraraj A, Al-Ghunaim A, Al-Yamani F. Chemical profile and antioxidant activities of 26 selected species of seaweeds from Kuwait coast. Journal of Applied Phycology. 2019;31:2653–2668. https://doi.org/10.1007/s10811-019-1739-8

49. Gopidas SK, Subramani N. In vitro antioxidant and cytotoxic properties of fucoidan from three Indian brown seaweeds. Asian Journal of Pharmaceutical and Clinical Research. 2019;12(9):99–105. http://dx.doi.org/10.22159/ajpcr.2019.v12i9.34164

50. Koh HSA, Lu J, Zhou W. Structure characterization and antioxidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand. Carbohydrate polymers. 2019;212:178–185. https://doi.org/10.1016/j.carbpol.2019.02.040

51. Swaminathan1 R, Syed Ali1 M, AnuradhaV, Abinaya R, Ananthalakshmi JS, Yogananth N. Antioxidant potential of fucose isolated from the marine macroalgae padina gymnospora. Bioscience Biotechnology Research Communications. 2021;14(3):1302–1308. http://dx.doi.org/10.21786/bbrc/14.3.59

52. Kalenik TK, Darwish F, Alradzhab M, Razgonova MP, Senotrusova TA, Motkina EV. Influence of CO2 extracts of mint (Mentha piperita L.) And clove (Syzygium aromaticum L.) On the oxidative stability of soybean oil. Bulletin of Kamchatka State Technical University.2021;55:29–40. (In Russ.). https://doi.org/10.17217/2079-0333-2021-55-29-40; https://www.elibrary.ru/BNATOY

53. Čižmek L, Kralj MB, Čož-Rakovac R, Mazur DM, Ul’yanovskii NV, Likon M, et al. Supercritical Carbon Dioxide Extraction of Four Medicinal Mediterranean Plants: Investigation of Chemical Composition and Antioxidant Activity. Molecules. 2021; 26(18):5697. https://doi.org/10.3390/molecules26185697

54. Buelvas-Puello LM, Franco-Arnedo G, Martínez-Correa HA, Ballesteros-Vivas D, del Sánchez-Camargo AP, Miranda-Lasprilla D, et al. Supercritical Fluid Extraction of Phenolic Compounds from Mango (Mangifera indica L.) Seed Kernels and Their Application as an Antioxidant in an Edible Oil. Molecules. 2021;26(24):7516. https://doi.org/10.3390/molecules26247516

55. del Sánchez-Camargo AP, L-F Gutiérrez, Vargas SM, HA Martinez-Correa, Parada-Alfonso F, Narváez-Cuenca C-E. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. The Journal of Supercritical Fluids. 2019;152:104574. http://dx.doi.org/10.1016/j.supflu.2019.104574

56. Rebey IB, Bourgou S, Detry P, Wannes WA, Kenny T, Ksouri R, et al. Green Extraction of Fennel and Anise Edible Oils Using Bio-Based Solvent and Supercritical Fluid: Assessment of Chemical Composition, Antioxidant Property, and Oxidative Stability. Food and Bioprocess Technology. 2019;12:1798–1807. https://doi.org/10.1007/s11947-019-02341-8

57. Blasi F, Cossignani L. An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. Processes. 2020;8(8):956. https://doi.org/10.3390/pr8080956


Войти или Создать
* Забыли пароль?