FRACTIONATED SUBSTANCES FROM MARAL (CERVUS ELAPHUS SIBIRICUS) VELVET ANTLERS IN FUNCTIONAL FOODS
Abstract and keywords
Abstract (English):
Velvet antlers are non-ossified antlers of maral (Cervus elaphus sibiricus) harvested during the growth phase. They are a common raw material in biologically active supplements with reliable preventive and therapeutic effects. This new technology provides a high-quality fractionation of raw velvet antlers that expands the potential application of velvet antler products in functional foods. The article describes the biochemical profile of substances derived from maral velvet antlers obtained by fractionation. The raw maral velvet antlers were fractionated using percolation, high-temperature hydrolysis, and subcritical extraction. The samples were dried to a moisture content of 5–10%. The analysis involved the following parameters: proteins, fats, ash, moisture, macro- and microelements, amino acids, fatty acids, and molecular weight distribution of peptide fractions. The blood and cartilage-derived substances contained a high-value protein fraction (74.29–80.59%) with an amino acid score ranging from 97 to 227% for threonine, phenylalanine, isoleucine, and tryptophan. The analysis of peptide fractions revealed the presence of low-molecular-weight peptides (< 2.9 kDa), with the highest concentration in the cartilage-derived substance. Regarding the mineral composition, the blood and lymph fraction proved to be rich in calcium (16,590.00 mg/100 g), sodium (799.10 mg/100 g), magnesium (319.80 mg/100 g), and zinc (6.40 mg/100 g) while the cartilage contained a lot of potassium (408.60 mg/100 g) and iron (54.30 mg/100 g). Phosphorus was the predominant element across all mineral fractions, with a concentration of 14,000.00 mg/100 g. The biochemical composition of the substances fractionated from maral (Cervus elaphus sibiricus) velvet antlers demonstrated a high biological value and a strong potential for the functional food industry.

Keywords:
Cervus elaphus sibiricus, substance, fractionation, functional product, antlers, biochemical composition, peptides, amino acids
Text
Text (PDF): Read Download
References

1. Soetedjo NNM. The role of nutrition in various endocrine and metabolic diseases. Clinical Nutrition Open Science. 2025;62:164–188. https://doi.org/10.1016/j.nutos.2025.05.015

2. Lee CD, Hardin CC, Longo DL, Ingelfinger JR. Nutrition in medicine – A new review article series. The New England Journal of Medicine. 2024;390(14):1324–1325. https://doi.org/10.1056/NEJMe2313282

3. Lozada-Martinez ID, Vindas-Meza L, Castelblanco-Toro S, Salazar-Uribe JC, Anaya J. The impact of nutritional status on centenarians physical, mental, and functional health. Clinical Nutrition Open Science. 2025;60:10–20. https://doi.org/10.1016/j.nutos.2025.01.010

4. Feng L, Chu Z, Quan X, Zhang Y, Yuan W, et al. Malnutrition is positively associated with cognitive decline in centenarians and oldest-old adults: A cross-sectional study. eClinicalMedicine. 2022;47:101336. https://doi.org/10.1016/j.eclinm.2022.101336

5. Prosekov AYu, Vesnina AD, Lyubimova NA, Chekushkina DYu, Mikhailova ES. Consumer genomics in personalized nutrition. Food Processing: Techniques and Technology. 2025;55(2):400–415. (In Russ.) http s://doi.org/10.21603/2074-9414-2025-2-2582

6. Yiğit A, Bielska P, Cais-Sokolińska D, Samur G. Whey proteins as a functional food: Health effects, functional properties, and applications in food. Journal of the American Nutrition Association. 2023;42(8):758–768. https://doi.org/10.1080/27697061.2023.2169208

7. Gupta A, Sanwal N, Bareen MA, Barua S, Sharma N, et al. Trends in functional beverages: Functional ingredients, processing technologies, stability, health benefits, and consumer perspective. Food Research International. 2023;170:113046. https://doi.org/10.1016/j.foodres.2023.113046

8. Berry CW, Murray B, Kenney WL. Scientific basis for a milk permeate-based sports drink – A critical review. International Dairy Journal. 2022;127:105296. https://doi.org/10.1016/j.idairyj.2021.105296

9. Chakrabarti S, Guha S, Majumder K. Food-derived bioactive peptides: Production, biological activities, opportunities and challenges. Nutrients. 2018;10(11):1738. https://doi.org/10.3390/NU10111738

10. Wang M, Zhou Z, Wei Y, He R, Yang J, et al. Dissecting the mechanisms of velvet antler extract against diabetic osteoporosis via network pharmacology and proteomics. Journal of Ethnopharmacology. 2025;341:119334. https://doi.org/10.1016/j.jep.2025.119334

11. Ding C, Hao M, Ma S, Zhang Y, Yang J, et al. Identification of peptides with antioxidant, anti-lipoxygenase, anti-xanthine oxidase and anti-tyrosinase activities from velvet antler blood. LWT. 2022;168:113889. https://doi.org/10.1016/j.lwt.2022.113889

12. Cao T-Q, An H-X, Ma R-J, Dai K-Y, Ji H-Y, et al. Structural characteristics of a low molecular weight velvet antler protein and the anti-tumor activity on S180 tumor-bearing mice. Bioorganic Chemistry. 2023;131:106304. https://doi.org/10.1016/j.bioorg.2022.106304

13. Satayeva ZhI, Zhetimkarinov ED. Preventive drinks based on deer antler powders. Norwegian Journal of development of the International Science. 2024;(140):4–8. (In Russ.) https://doi.org/10.5281/zenodo.13768163

14. Kazantsev DA, Rastopshina LV. The features of the altai-sayan maral herd in the SPK PZ “Abayskiy”. Bulletin of Altai State Agricultural University. 2021;(5):88–92. (In Russ.)

15. Sui Z, Sun H, Weng Y, Zhang X, Sun M, et al. Quantitative proteomics analysis of deer antlerogenic periosteal cells reveals potential bioactive factors in velvet antlers. Journal of Chromatography A. 2020;1609:460496. https://doi.org/10.1016/j.chroma.2019.460496

16. Chen Y, Zhang Z, Jin W, Li Z, Bao C, et al. Integrative analyses of antler cartilage transcriptome and proteome of gansu red deer (Cervus elaphus kansuensis) at different growth stages. Animals. 2022;12(7):934. https://doi.org/10.3390/ani12070934

17. Yao B, Zhou Z, Zhang M, Leng X, Zhao D. Investigating the molecular control of deer antler extract on articular cartilage. Journal of orthopaedic Surgary and Research. 2021;16:8. https://doi.org/10.1186/s13018-020-02148-w

18. Korosteleva NI, Kondrashkova IS, Rudishina NM, Kamardina IA. Biometrics in animal farming. Barnaul: AGAU; 2009. 210 p.

19. Singh RR, Khanna PP, Singh AK, Goyal SP. Elemental characterization of antlers of variours deer species using X-Ray fluorescence (XRF): A tool for forensic examination. Forensic Science International. 2022;332:111172. https://doi.org/10.1016/j.forsciint.2022.111172

20. Orassay A, Sadvokassova D, Berdigaliyev A, Sagintayev A, Myrzagali S, et al. Deer antler extract: Pharmacology, rehabilitation and sports medicine applications. Pharmacologycal Research – Modern Chinese Medicine. 2024;10:100316. https://doi.org/10.1016/j.prmcm.2023.100316

21. Jeon B, Kim S, Lee S, Park P, Sung S, et al. Effect of antler growth period on the chemical composition of velvet antler in sika deer (Cervus nippon). Mammalian Biology. 2009;74(5):374–380. https://doi.org/10.1016/j.mambio.2008.07.005

22. Jang DW, Ameer K, Oh JH, Park MK. Optimization and pretreatment for hot water extraction of Korean deer (Cervus canadensis erxleben) velvet antlers. Journal of microbiology and biotechnology. 2020;30(8):1116–1123. https://doi.org/10.4014/JMB.2004.04009

23. Shi M, Li T, Zhao Y, He Z, Zong Y, et al. Comparative studies on the chemical composition and pharmacological effects of vinegar-processed antler glue modified from Lei Gong Pao Zhi Lun and traditional water-processed antler glue. Journal of Ethnopharmacology. 2024;321:117508. https://doi.org/10.1016/j.jep.2023.117508

24. Widyowati R, Suciati S, Haryadi DM, Chang H-I, Suryawan IPGN, et al. The effect of Rusa unicolor antler deer extracts from East Kalimantan in bone turnover cell models. Turkish Journal of Pharmaceutical Sciences. 2020;17(4):440–445. https://doi.org/10.4274/tjps.galenos.2019.57805

25. Sui Z, Zhang L, Huo Y, Yukui Z. Bioactive components of velvet antlers and their pharmacological properties. Journal of Pharmaceutical and Biomedical Analysis. 2014;87:229–240. https://doi.org/10.1016/j.jpba.2013.07.044

26. López-Pedrouso M, Lorenzo JM, Landete-Castillejos T, Chonco L, Pérez-Barbería FJ, et al. Quantitative proteomic analysis of deer antler from two regenerating and mineralizing sections. Biology. 2021;10(7):679. https://doi.org/10.3390/biology10070679

27. Krotova MG, Grishaeva IN. Collagen hydrolysed from maral raw material: Production technology and biochemical composition. Food Processing: Techniques and Technology. 2024;54(4):884–896. (In Russ.) https://doi.org /10.21603/2074-9414-2024-4-2549

28. Guo H, Zhang Q, Xin L, Zhang H, Wang S. Dietary hydroxyproline promotes collagen deposition in swim bladder through regulating biosynthesis of amino acid: In-vitro and in-vivo investigations in Nibea coibor. Aquaculture. 2023;573:739614. https://doi.org/10.1016/j.aquaculture.2023.739614

29. Krishnan A, Raghu S, Eswaramoorthy R, Perumal G. Biodegradable glutamic acid loaded polycaprolactone nanofibrous scaffold for controlled dentin mineralization. Journal of Drug Delivery Science and Technology. 2025;104:106546. https://doi.org/10.1016/j.jddst.2024.106546

30. Lioi M, Tengattini S, Gotti R, Bagatin F, Galliani S. Chromatographic separation by RPLC-ESI-MS of all hydroxyproline isomers for the characterization of collagens from different sources. Journal of Chromatography A. 2024;1720:464771. https://doi.org/10.1016/j.chroma.2024.464771

31. Rucklidge GJ, Milne G, Bos KJ, Farquharson C, Robins SP. Deer antler does not represent a typical endochondral growth system: Immunoidentification of collagen type X but little collagen type II in growing antler tissue. Comparative Biochemistry and Physiology part B: Biochemistry and Molecular Biology. 1997;118(2):303–308. https://doi.org/10.1016/S0305-0491(97)00171-5

32. Gordynets SA, Madziyevskaya TA, Kurchenko VP. New Trends in food ingredient development. Proceedings of Seminar with International Participation. Minsk: Izdatelskiy tsentr BGU; 2021. 106 p.

33. Joint WHO/FAO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition. WHO Technical Report Series. 2007;(935):1–265.

34. Yaremenko OB, Anokhina HA, Burianov OA. Joint. Cartilage. Collagen. Trauma. 2020;21(4):6–12. (In Russ.) https://doi.org/10.22141/1608-1706.4.21.2020.212531

35. Lin L, Li C, Zhang T, Xia C, Bai Q, et al. An in silico scheme for optimizing the enzymatic acquisition of natural biologically active peptides based on machine learning and virtual digestion. Analytica Chimica Acta. 2024;1298:342419. https://doi.org/10.1016/j.aca.2024.342419

36. Zamudio FV, Hidalgo-Figueroa SN, Ortíz Andrade RR, Hernández Álvarez AJ, Segura Campos MR. Identification of antidiabetic peptides derived from in silico hydrolysis of three ancient grains: Amaranth, Quinoa and Chia. Food Chemistry. 022;394:133479. https://doi.org/10.1016/j.foodchem.2022.133479

37. Chirinos R, Escobar-Mendoza N, Figueroa-Merma A, de Oliveira TV, Guzmán F, et al. Evaluation of the antihypertensive and antidiabetic potential of peptides from the globulin fraction of quinoa (Chenopodium quinoa) by an in silico and in vitro approach. International Journal of Food Science and Technology. 2023;58(8):4386–4396. https://doi.org/10.1111/ijfs.16544

38. Pektaş AN, Korkmaz EM. Novel antimicrobial defensin peptides from different coleopteran insects (Coleoptera: Insecta): Identification, characterisation and antimicrobial properties. Journal of Asian Natural Products Research. 2025;27(8):1146–1160. https://doi.org/10.1080/10286020.2024.2448011

39. Ghafoor H, Asim MN, Ibrahim MA, Ahmed S, Dengel A. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder. Computers in Biology and Medicine. 2024;176:108538. https://doi.org/10.1016/j.compbiomed.2024.108538

40. Hajigha MN, Hajikhani B, Vaezjalali M, Kafil HS, Anari RK, et al. Antiviral and antibacterial peptides: Mechanisms of action. Heliyon. 2024;10(22):e40121. https://doi.org/10.1016/j.heliyon.2024.e40121

41. Smirnova AV, Tikhonov SL. Amino acid patterns that determine antihyperuricemic activity of peptides: Identification and predictive analysis. Food Processing: Techniques and Technology. 2024;54(4):687–700. (In Russ.) https://doi.org/10.21603/2074-9414-2024-4-2536

42. Mottola S, Del Bene A, Mazzarella V, Cutolo R, Boccino I, et al. Sustainable ultrasound-assisted solid-phase peptide synthesis (SUS-SPPS): Less waste, more efficiency. Ultrasonics Sonochemistry. 2025;114:107257. https://doi.org/10.1016/j.Ultsonch.2025.107257

43. Kohl J, Jerger S, König D, Centner C. Chapter 21 – Applications in nutrition: Sport nutrition. In: Toldrá F, Wu J, editors. Biologically Active Peptides. NY, Oxford: Academic Press; 2021. pp. 525–550. https://doi.org/10.1016/B978-0-12-821389-6.00024-8

44. Chandimali N, Bak S-G, Park EH, Lim H-J, Won Y-S, et al. Bioactive peptides derived from duck products and byproducts as functional food ingredients. Journal of Functional Foods. 2024;113:105953. https://doi.org/10.1016/j.jff.2023.105953

45. Asim MN, Asif T, Mehmood F, Dengel A. Peptide classification landscape: An in-depth systematic literature review on peptide types, databases, datasets, predictors architectures and performance. Computers in Biology and Medicine. 2025;188:109821. https://doi.org/10.1016/j.compbiomed.2025.109821

46. Bao X, Wu J. Impact of food-derived bioactive peptides on gut function and health. Food Research International. 2021;147:110485. https://doi.org/10.1016/j.foodres.2021.110485

47. Chen D, Shu Y, Chen J, Cao X. Preparation and in vitro bioactive evaluation of cashew-nut proteins hydrolysate as a potential source of anti-allergy peptides. Journal of Food Science & Technology. 2021;58:3780–3789. https://doi.org/10.1007/s13197-020-04838-z

48. Suttie JM, Gluckman PD, Butler JH, Fennessy PF, Corson ID, et al. Insum-like growth factor 1 (IGF-1) antlerstimulating holmone? Endocrinology. 1985;116(2):846–848. https://doi.org/10.1210/endo-116-2-846

49. Zhao L, Wang X, Zhang X, Xie Q. Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus). Journal of Food and Drug Analisis. 2016;24(2):376–384. https://doi.org/10.1016/j.jfda.2015.10.003

50. Ma S, Ding Q, Xia G, Li A, Li J, et al. Multifunctional biomaterial hydrogel loaded with antler blood peptide effectively promotes wound repair. Biomedicine & Pharmacotherapy. 2024;170:116076. https://doi.org/10.1016/j.biopha.2023.116076

51. Hao M, Peng X, Sun S, Ding C, Liu W, et al. Chitosan/sodium alginate/velvet antler blood peptides hydrogel promoted wound healing by regulating PI3K/AKT/mTOR and SIRT1/NF-kB pathways. Frontiers in Pharmacology. 2022;13:913408. https://doi.org/10.3389/fphar.2022.913408

52. Gómez JA, Ceacero F, Landete-Castillejos T, Gaspar-López E, García AJ, et al. Factors affecting antler investment in Iberian red deer. Animal Production Science. 2012;52:867–873. https://doi.org/10.1071/AN11316

53. Shi H, Yu T, Li Z, Lu W, Zhang M, et al. Bone regeneration strategy inspired by the study of calcification behavior in deer antler. Materials Science and Engineering: C. 2015;57:67–76. https://doi.org/10.1016/j.msec.2015.07.043

54. Hamid HA, Khairul Anuar MZA, Zulkifli FH. Preparation and characterization of deer velvet antler/polyvinyl alcohol (DVA/PVA) scaffold for bone tissue engineering. Materialstoday: Proceedings. 2022;51(Part 2):1332–1337. https://doi.org/10.1016/j.matpr.2021.11.377

55. Sawant RC, Somkuwar SR, Luo S-Y, Kamble RB, Panhekar DY, et al. Chapter 4 – Novel extraction and characterization methods for phytochemicals. In: Pati S, Sarkar T, Lahiri D, editors. Recent Frontiers of Phytochemicals. Netherlands: Elsevier; 2023. pp. 63–84. https://doi.org/10.1016/B978-0-443-19143-5.00035-9

56. Chonco L, Landete-Castillejos T, Serrano-Heras G, Pérez Serrano M, Pérez-Barbería FJ, et al. Anti-tumour activity of deer growing antlers and its potential applications in the treatment of malignant gliomas. Scientific Reports. 2021;11:42. https://doi.org/10.1038/s41598-020-79779-w

57. Loftus LV, Rolle LTA, Wang B, Pienta KJ, Amend SR. Dysregulation of labile iron predisposes chemotherapy resistant cancer cells to ferroptosis. International Journal of Molecular Sciences. 2025;26(9):4193. https://doi.org/10.3390/ijms26094193

58. Kim C-T, Gujral N, Ganguly A, Suh J-W, Sunwoo HH. Chondroitin sulphate extracted fromantler cartilage using high hydrostatic pressure and enzymatic hydrolysis. Biotechnology reports. 2014;4:14–20. https://doi.org/10.1016/j.btre.2014.07.004

59. Collazo N, Carpena M, Nuñez-Estevez B, Otero P, Simal-Gandara J, et al. Health promoting properties of bee royal jelly: Food of the queens. Nutrients. 2021;13(2):543. https://doi.org/10.3390/nu13020543


Login or Create
* Forgot password?