Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
DNA tests of dairy microbiota make it possible to assess the quality, safety, and authenticity of dairy products. Advanced though they are, modern molecular genetic methods largely depend on the quality of the extracted DNA. Dairy matrices are rich in lipids, proteins, and other inhibitors that complicate the DNA extraction. As a result, it is of greatest importance to select the optimal methods of DNA isolation and purification for each particular case. This article is a review of the DNA extraction methods applied to dairy microbiota. The authors evaluated their efficiency and major matrix-related limitations to select those with the best prospects for the dairy industry. The review covered theoretical, experimental, and comparative studies reported in Google Scholar, ScienceDirect, PubMed, Web of Science, and eLibrary in 2010–2024. The main DNA extraction approaches can be classified as chemical, enzymatic, mechanical, and sorption-based; they can be used in combinations. Lipids, proteins, and calcium affect the DNA purity and yield. To minimize the PCR inhibition, scientists recommend to use organic solvents, silica columns, and magnetic sorbents. The existing extraction methods are constantly modernized to enhance their accuracy. New universal, cost-effective, and reproducible protocols provide reliable results in food biotechnology and dairy quality control.
DNA, milk, dairy products, milk microbiota, PCR test
1. Novikova, I. S. Sravnenie razvitiya associacii molochnokislyh bakteriy pri roste na moloke razlichnyh sel'skohozyaystvennyh zhivotnyh / I. S. Novikova, A. V. Begunova // Molodye issledovateli agropromyshlennogo i lesnogo kompleksov – regionam. Tom 2. Vologda-Molochnoe: Vologodskaya gosudarstvennaya molochnohozyaystvennaya akademiya im. N. V. Vereschagina, 2021. S. 270–273. https://www.elibrary.ru/46488579
2. Zalisskaya, E. V. Sravnenie metodov opredeleniya antioksidantnoy aktivnosti v produkte, vyrabotannom na zakvaske prirodnoy associacii mikroorganizmov / E. V. Zalisskaya // Pischevaya promyshlennost'. 2021. № 5. S. 8–12. https://doi.org/10.52653/PPI.2021.5.5.001; https://elibrary.ru/xcetnp
3. Semenihina, V. F. Vliyanie mikroflory na kachestvo tvoroga / V. F. Semenihina [i dr.] // Molochnaya promyshlennost'. 2016. № 3. S. 51–53. https://elibrary.ru/vmbqtp
4. Rakib, M. R. H. Starter Cultures Used in the Production of Probiotic Dairy Products and Their Potential Applications: A Review / M. R. H. Rakib [et al.] // Chemical and Biomolecular Engineering. 2017. Vol. 2(2). P. 83–89. https://doi.org/10.11648/j.cbe.20170202.12
5. Rozhkova, I. V. Razvitie mikrobiologii kislomolochnyh produktov, v tom chisle s probioticheskimi svoystvami / I. V. Rozhkova, V. F. Semenihina, A. V. Begunova // Idei akademika Vladimira Dmitrievicha Haritonova v naukoemkih tehnologiyah pererabotki moloka. M.: Vserossiyskiy nauchno-issledovatel'skiy institut molochnoy promyshlennosti, 2021. S. 227–242. https://elibrary.ru/qxmtak
6. Vandera, E. Approaches for enhancing in situ detection of enterocin genes in thermized milk, and selective isolation of enterocin-producing Enterococcus faecium from Baird-Parker agar / E. Vandera [et al.] // International Journal of Food Microbiology. 2018. Vol. 281. P. 23–31. https://doi.org/10.1016/j.ijfoodmicro.2018.05.020
7. Cremonesi, P. Bovine Milk Microbiota: Comparison among Three Different DNA Extraction Protocols To Identify a Better Approach for Bacterial Analysis / P. Cremonesi [et al.] // Microbiology Spectrum. 2021. Vol. 9(2). e0037421. https://doi.org/10.1128/spectrum.00374-21
8. Hedman, J. Overcoming inhibition in real-time diagnostic PCR / J. Hedman [et al.] // Methods in Molecular Biology. 2013. Vol. 943. P. 17–48. https://doi.org/10.1007/978-1-60327-353-4_2
9. Ganda, E. DNA extraction and host depletion methods significantly impact and potentially bias bacterial detection in a biological fluid / E. Ganda [et al.] // mSystems. 2021. Vol. 6(3). e0061921. https://doi.org/10.1128/mSystems.00619-21
10. Schwenker, J. A. Bovine milk microbiota: Evaluation of different DNA extraction protocols for challenging samples / J. A. Schwenker [et al.] // Microbiology Open. 2022. Vol. 11(2). e1275. https://doi.org/10.1002/mbo3.1275
11. Yegin, Z. A metagenomic survey of bacterial communities from kurut: The fermented cow milk in Kyrgyzstan / Z. Yegin [et al.] // Chemistry & Biodiversity. 2024. Vol. 21(2). e202301374. https://doi.org/10.1002/cbdv.202301374
12. Natarajan, V. P. A Modified SDS-Based DNA Extraction Method for High Quality Environmental DNA from Seafloor Environments / V. P. Natarajan [et al.] // Frontiers in microbiology. 2016. Vol. 7: 986. https://doi.org/10.3389/fmicb.2016.00986
13. Minas, K. Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures / K. Minas [et al.] // FEMS Microbiology Letters. 2011. Vol. 325(2). P. 162–169. https://doi.org/10.1111/j.1574-6968.2011.02424.x
14. Breitenwieser, F. Complementary Use of Cultivation and High-Throughput Amplicon Sequencing Reveals High Biodiversity Within Raw Milk Microbiota / F. Breitenwieser [et al.] // Frontiers in Microbiology. 2020. Vol. 11. 1557. https://doi.org/10.3389/fmicb.2020.01557
15. Gapp, C. Serial fermentation in milk generates functionally diverse community lineages with different degrees of structure stabilization / C. Gapp [et al.] // mSystems. 2024. Vol. 9(8). e00445-24. https://doi.org/10.1128/msystems.00445-24
16. Kapustin, D. V. Vysokoeffektivnyy metod odnostadiynogo vydeleniya DNK dlya PCR-diagnostiki Mycobacterium tuberculosis / D. V. Kapustin [i dr.] // Acta Naturae (russkoyazychnaya versiya). 2014. T. 6. № 2(21). S. 52–57. https://elibrary.ru/slbmrz
17. Demirci, T. A metagenomic approach to homemade back-slopped yogurts produced in mountainous villages of Turkey with the potential next-generation probiotics / T. Demirci [et al.] // LWT - Food Science and Technology. 2022. Vol. 154. 112860. https://doi.org/10.1016/j.lwt.2021.112860
18. Biolcati, F. High-throughput sequencing approach to investigate Italian artisanal cheese production / F. Biolcati [et al.] // Journal of Dairy Science. 2020. Vol. 103(11). P. 10015–10021. https://doi.org/10.3168/jds.2020-18208
19. Porcellato, D. Viable cells differentiation improves microbial dynamics study of fermented milks / D. Porcellato [et al.] // International Dairy Journal. 2015. Vol. 47. P. 136–142. https://doi.org/10.1016/j.idairyj.2015.03.006
20. Du, B. Impacts of Milking and Housing Environment on Milk Microbiota / B. Du [et al.] // Animals. 2020. Vol. 10(12). 2339. https://doi.org/10.3390/ani10122339
21. Xue, Z. Impact of DNA Sequencing and Analysis Methods on 16S rRNA Gene Bacterial Community Analysis of Dairy Products / Z. Xue, M. E. Kable, M. L, Merco // mSphere. 2018. Vol. 3(5). e00410-18. https://doi.org/10.1128/mSphere.00410-18
22. Cissé, H. Molecular characterization of Bacillus, lactic acid bacteria and yeast as potential probiotic isolated from fermented food / H. Cissé [et al.] // Scientific African. 2019. Vol. 6. e00175. https://doi.org/10.1016/j.sciaf.2019.e00175
23. Sultana, R. Assessment of bacterial composition of locally processed back-slopped yogurt through next-generation sequencing / R. Sultana [et al.] // Pakistan Journal of Zoology. 2023. Vol. 55(6). 2723. https://doi.org/10.17582/journal.pjz/20220619100617
24. Quigley, L. A comparison of methods used to extract bacterial DNA from raw milk and raw milk cheese / L. Quigley [et al.] // Journal of Applied Microbiology. 2012. Vol. 113(1). P. 96–105. https://doi.org/10.1111/j.1365-2672.2012.05294.x
25. Siebert, A. Amplicon-sequencing of raw milk microbiota: impact of DNA extraction and library-PCR / A. Siebert [et al.] // Applied Microbiology and Biotechnology. 2021. Vol. 105. P. 4761–4773. https://doi.org/10.1007/s00253-021-11353-4
26. Xue, Z. Improved assessments of bulk milk microbiota composition via sample preparation and DNA extraction methods / Z. Xue [et al.] // PLoS ONE. 2022. Vol. 17(9). e0267992. https://doi.org/10.1371/journal.pone.0267992
27. Kour, G. A simple modification in the DNA extraction process to extract good quality bacterial DNA from milk / G. Kour [et al.] // Indian Journal of Animal Sciences. 2020. Vol. 90(4). P. 525–529. https://doi.org/10.56093/ijans.v90i4.104187
28. Shangpliang, H. N. J. Bacterial community in naturally fermented milk products of Arunachal Pradesh and Sikkim of India analysed by high-throughput amplicon sequencing / H. N. J. Shangpliang [et al.] // Scientific Reports. 2018. Vol. 8(1). 1532. https://doi.org/10.1038/s41598-018-19524-6
29. Mertens, K. Comparative evaluation of eleven commercial DNA extraction kits for real-time PCR detection of Bacillus anthracis spores in spiked dairy samples / K. Mertens [et al.] // International Journal of Food Microbiology. 2014. Vol. 170. P. 29–37. https://doi.org/10.1016/j.ijfoodmicro.2013.11.009
30. Psifidi, A. A comparison of six methods for genomic DNA extraction suitable for PCR-based genotyping applications using ovine milk samples / A. Psifidi [et al.] // Molecular and Cellular Probes. 2010. Vol. 24(2). P. 93–98. https://doi.org/10.1016/j.mcp.2009.11.001
31. Markusková, B. Impact of DNA extraction methods on 16S rRNA-based profiling of bacterial communities in cheese / B. Markusková [et al.] // Journal of Microbiological Methods. 2021. Vol. 184. 106210. https://doi.org/10.1016/j.mimet.2021.106210




