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Abstract: The paper deals with the theory of fuzzy sets as applied to food industry products. The fuzzy indicator function is
shown as a criterion for determining the properties of the product. We compared the approach of fuzzy and probabilistic
classifiers, their fundamental differences and areas of applicability. As an example, a linear fuzzy classifier of the product
according to one-dimensional criterion was given and an algorithm for its origination as well as approximation is considered,
the latter being sufficient for the food industry for the most common case with one truth interval where the indicator function
takes the form of a trapezoid. The results section contains exhaustive, reproducible, sequentially stated examples of fuzzy logic
methods application for properties authentication and group affiliation of food products. Exemplified by measurements of the
criterion with an error, we gave recommendations for determining the boundaries of interval identification for foods of mixed
composition. Harrington’s desirability function is considered as a suitable indicator function of determining deterioration rate
of a food product over time. Applying the fuzzy logic framework, identification areas of a product for the safety index by the
time interval in which the counterparty selling this product should send it for processing, hedging their possible risks connected
with the expiry date expand. In the example of multi-criteria evaluation of a food product consumer attractiveness, Harrington’s
desirability function, acting as a quality function, was combined with Weibull probability density function, accounting for the
product’s taste properties. The convex combination of these two criteria was assumed to be the decision-making function of the
seller, by which identification areas of the food product are established.
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INTRODUCTION The method of fuzzy sets theory application to

In the food industry, the task of identification — that
is, determining the attribution of a food product to a
particular class in terms of condition, quality and taste
characteristics — stands alone. For the solution of this
task there exist: a set of criteria both measurable and
expert; typical characteristics that product clusters must
meet; and stratifying borderline values [1-5].

At the same time, all the obtained relations are
empirical. Besides, as discriminatory criteria are
construed, product clusters often intersect according
to some measured parameters, so it makes sense to
introduce a characteristic of attribution [6]. The latter
would be a unit (“the sample certainly belongs to this
product cluster”) in cluster centers and would decrease
at the borders (“the sample belongs to some extent to
one cluster and to some extent to the neighboring one”).
This would allow making product identification more
transparent and applicable to real food applications [7, §].

the problems of the food industry, proposed in this
paper, will create lax regulatory restrictions on the
composition, quality and sanitary characteristics of
the product, taking into account the varied errors
of methods and measurements. The purpose of this
research was to provide food industry experts with
a tool that allows building a robust multiparameter
identification criteria based on empirical product data.

STUDY OBJECTS AND METHODS

The concept of fuzzy sets as applied to the food
industry. In order to define fuzzy set 4 for elements
of R™, enter the indicator membership function':

xa(x) €]0,1],x € R" Q)

! Hereafter: the indicator function and the membership function are
interchangeable concepts
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Figure 1 Fuzzy and Boolean approaches to the definition of a set consisting of an element {4}

Concurrently, the set in the classical sense of, defined
in this way, is a special case of A%, a fuzzy set:

xar(x) €{0,1},x e R" 2

Thus, fuzzy logic extends the Boolean one with two
values {0,1} to the continuum of values in the interval
of [0,1]. The difference between the approaches is shown
in Fig. 1. Most often, the value y,(x) is interpreted as a
subjective assessment of x as attributed to 4, for example
Xa(x)=0.9 means that x is 90% of 4 [9].

The example of interpretation contains the word
“subjective”, which presupposes the possibility of each
subject having an opinion concerning the relationship
of each specific set attribution on the basis of their
own indicator function. For food industry, this means
the need of using a consensus membership function
for each criterion; the function based on a particular
food industry experts’ consolidated opinion, as well as
confirmed experimental data [10].

The subjectivity of assessment also implies the
existence of a method of translating psycholinguistic
conclusions about the considered attribution to the
digital domain of the indicator function.

The concept of a linguistic variable includes the
object under study, as well as a set of natural language
phrases (linguistic lexemes) that the variable can take in
a fuzzy sense. The method of establishing the relevance
is individually selected for each industry and case of
study. Common sense is one of the primary factors,
since the number of linguistic lexemes used by experts
and intended for digital transformation is extremely
diverse, for example: “true”, “false”, “almost false”,
“almost true”, “unknown”, “possible”, “sometimes”,
“may be”, etc. (Fig. 2).

The main prerequisite for the use of fuzzy logic
as applied to the food industry is the inability to
build clear relations and criteria that link the quality
and performance of products and are not subject to
multiparameter, unamenable to expression, factors of
influence and measurement errors [11].

In a way, the definition of a fuzzy set via the
indicator function contains neither lack of focus nor
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ambiguity, so it is possible to use the fuzzy logic
framework for setting standards and identification
methods in the food industry.

Basic operations with fuzzy sets. Let us examine
in more detail the possible fuzzy sets manipulations and
highlight the most common operations in terms of the
food industry (in fuzzy logic it is impossible to identify
a finite set of basic functions, through which all the
others could be expressed; besides, operations on sets
become “blurred”) [12-14].

Consider the sets 4, B ¢ R™. The relation of inclusion
of the 4 set B into:

ACB & yu(x) < yp(x),vx € R" 3)

The most practical option for constructing fuzzy
negation 4 is:

@

There is an unlimited number of simple fuzzy
negations; besides, this method is convenient for
constructing linguistic expert models, for example,
the negation for “unknown” (x4(x) = 0.5) will also be
“unknown”.

The expansion of conjunction (operation “AND”) for
fuzzy sets is called the t-norm (or triangular norm), and
the expansion of disjunction (operation “OR”) is called
the s-norm. In practice, most commonly used are:

The logical product of ANB and sum AUB:

Xa(x) =1—x,(x)

Xang(x) = min(x,(x), xg(x))
Xaup(x) = max(x,(x), xp(x))

The algebraic product of A*B and sum A+B

®)

False

_____________________

Unknown

0.0 0.2 0.4 0.6 0.8

Figure 2 An example of relation between the linguistic “attri-
bution” variable and the intervals of the indicator function
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Xaxg (X)) = xa(x) - xp(x)

Xarp(¥) = xa(0) + x5 (¥) = xa(®¥) - x5(x)  (6)

The presented pairs of t- and s- norms are called
dual, since when using the above negation, de Morgan’s
laws are implemented in a fuzzy form, which makes
their application practically convenient in calculations.

Failure of the law of complementarity in the general
case must be noted as an important feature of fuzzy
logic. Denoting t-norm as &, s-norm as |, we have:

Xaga(x) =20
Xaa(®) =1 (7)

The postulate of Boolean algebra “some criterion
and its negation are simultaneously unjust” violates the
introduction of intermediate variants. In particular, that
of the lexeme “unknown”, since it and its negation are
assumed to be simultaneously and equally fair. This fact
demonstrates the coexistence of the property and its
negation.

With multi-criteria identification of food products
it is often necessary to assign weight numbers for each
individual criterion while obtaining the aggregate
indicator quality function. To do this, convex integration
with 1 coefficient (denoted as (4+B)* is used:

@®

This formula is easily generalized for the case of
criteria. Supposing there are fuzzy sets A4,, 4,, ...
where A; € R™ their convex integration will have the
form:

Xnesy (0 = s (0) + (1 = Dtp ()

b Anu

X5 = ) Auka ()
i=1

(%)
Z;Ai —1

Constructing indicator functions, it is useful to
control the smoothness and speed of the transition of one
linguistic concept to another. To do this, we use a power
function that defines A% as follows:

©

=1
A = {/11,12, ...,/1m},

Xae(x) = xa()% a >0 (10)

If a < 1, the function reduces the requirements for
membership to the set A% with respect to A, at a > 1,
the function clarifies it.

Linear fuzzy classification. From the standpoint
of the probability theory the indicator function can be
interpreted as conditional probability
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that is, the probability of membership to the set of a
random variable X, provided that it was implemented

Xa() = P(X €A|X = x)

1.0¢ D B A -a
o
i
0.8} |
i
]
i
06| 4
> i
, i
0.4} 1 1t
\ [
1 i
! [
0.2} i i
1 | H
\ i
1 | H
)\ 4 i

3 4 5 6

14

Fat content, %

--a-- Low-fat
---o---High-fat

—e— Fat-free
«=--¢---- Medium-fat

Figure 3 Fuzzy classification of drinking milk by fat content

by x value. It should be noted that this is the basic
difference between the approaches: fuzzy logic operates
by the degree of membership to a particular set. While
probability theory (and “probabilistic” logic) indicates
the probability of occurrence of mutually exclusive
events.

As an example, consider the fuzzy classification
of drinking milk by fat content (Fig. 3)". According to
this classification, milk with a fat content of 3.75% is
both 0.5 medium-fat and 0.5 high-fat. We consciously
give no percentages here, because it is not a matter
of probability (otherwise, in a batch of milk with the
same fat content of 3.75%, half of the bottles would be
recognized as “medium-fat”, and the other half — as
“high-fat”, which makes no sense). Fuzzy sets exist in
superposition with each other, this being their main
advantage in food identification. Continuing the example
on the same classifier, 0.8 milk of average fat content
is actually the same as 0.2 of extra fat content, and this
has a direct interpretation since two linguistic postulates
describing different degrees of one measurable criterion
are associated. At the same time, it should be noted that
combining probabilistic and fuzzy methods has its own
scope; besides, probability distributions can be used as
indicator functions, as will be shown below.

In the example with milk fat linear functions are
used to determine the degree of membership, being the
most practically applicable for the food industry due to
the simplicity of construction and linguistic explanation
of the result [15, 16]. In order to construct a linear
characteristic function y4(x) for some criterion 4 on the
domain R € R there are three steps to follow:

(1) Determination of the intervals (x;, y;), i = 1 ... n,
where y,(x) =1 that is, belonging to such intervals is
characterized by the lexeme “certainly Yes™;

(2) Determination of the intervals (x/, yj), j = 1 ... m,
where x.(x), that is, their linguistic characteristics is
“certainly No”;

I State Standard 31450-2013. Drinking milk. Specifications. Moscow:
Standartinform; 2014. 9 p.
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Figure 4 Approximation of fuzzy classification of drinking milk by fat content

(3) Combination of the intervals into one list with the
length of k = n +m and sort them in ascending order
of the left border. Since in the resulting list the intervals
with the characteristics “certainly Yes” and “certainly
No” will alternate, it remains only to connect the
boundaries by linear function.

(a) For the sequence (x;, y;); (x{+1, yi+1) the function will
look like:

1 Vi

X(x):_ 7 x + [ +1'x€ y!x’ 12
A Xiy1 — Vi Xiy1 — Vi b l+1]( )

(b) For the sequence (x],¥)); (x;,1 yi+1) the function will

look like:

I
Xit1 — yi’ T Xi+1yl_ yL" e [yi’; xi+1] 13)
Of course, in practice the most common case is that
with one truth interval, and the function takes the form
of a trapezoid, as seen in the graph of milk classification.

For one truth interval the convenient approxima-
tion is: 1

x—cy? (14)
1+ (57)
where ¢ is the center of the interval, [ is its range, p is
the smoothing fit. In the context of the example, the
indicator functions for dairy products will take the form:

1 1 1 1

_x ¥ x —1.5\% x—3\% x — 5\ (15)
1+(o7s) 1+ () 1+ (oms) 1+ (G
for fat-free, low fat, medium fat and high fat products,
respectively. The patterns of these functions, as well as
comparison of the two approaches are shown in Fig. 4.

Xa(x) =

Xa(x) =

RESULTS AND DISCUSSION

To determine the value of the indicator function X4 (x)
at a particular point, it is sometimes necessary to resort
to nested fuzzy sets. This happens, for example, when
the values of the linguistic variables of the expert group
differ for the same criterion at a point. When a indicator
function of a set is realized not by a specific number, but
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by another indicator function, it is called a second order
fuzzy set. In practice, it is very difficult to use such items,
and they are absolutely unsuitable for establishing legal
relations between contractors of the food industry, in
particular, producers and consumers. In this case, instead
of the nested indicator function at a point, its integral
value is considered, for example, the consensus of experts
or the probability value, if the function was represented
by the probability density [17-19].

As an example, consider a criterion of a food
product, which according to regulatory documents
should fall into the interval [-1,1] (we consider it as a
fuzzy set ) with a measuring device error of £ 0.5 The
error was deliberately taken as comparable to the length
of the interval for a more visual demonstration of the
behavior of the indicator function at the boundary.

Suppose that the measurement error &~ N(0,c?)
is a normally distributed random variable with zero
expectation and dispersion, whose value can be
determined from the instrument error. If we assume
that 95.6% (which corresponds to the probability of a
normally distributed random variable falling within the
range + 20 relative to the mean value) of measurements
of x fall within the range x £ 0.5 (the assumption can be
strengthened or weakened depending on the conditions
and the nature of the error), it means that:

0.5 = 20,02

T 16 (16)

To construct the indicator function of the criterion,
let us ask: “what probability does the product satisfy the
criterion with if its measurement showed the result of?”.
Obviously, a second order fuzzy set emerges: for each x
there is an error probability density that can serve (after
some manipulations) as a nested indicator function. As
previously stated, it is more convenient to assume the
integral value as the value at the point, that is, from a
probabilistic point of view, to calculate the conditional
probability P(x, € I | x), where x, = x + ¢ is the real value
of the indicator. In this case, x;(x) is the possible real
value x + & on the interval [-1,1] probability density
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and fuzzy approaches

integral (i.e., the probability of x + ¢ falling into the
specified interval):

P(-1<x+e<1)=Pkx+e<1)—-P(+
+e<-1D=Pe<1-x)-Ple<-1-x) (17)

The last expression is nothing but the difference
between the distribution functions &,.(-) of the random
variable €. The formula is:

x(x) = P(1—x) = P(=1-x)

®,.(x) = %(1 + erf (2v2x)) a8)

erfx = if e~ dt
\/Eo

erf x is the error function, included for convenience of
calculations in many packages of mathematical data
processing, in particular, MS Excel.

In the classical approach to identification, any
measurement that falls within the interval [-1,1] £ 0.5
will be recognized as corresponding to the criterion (to
simplify the example, the questions of additional and
outlier measurements are omitted here), while already
at the values —1 and 1 the level of belonging to the
criterion in the fuzzy approach will be equal to only
0.5 (Fig. 5), and when approaching the boundaries of
a large interval —1.5 and 1.5, there is no chance for the
criterion. Moreover, to provide the characteristic “most
likely the product has a criterion” (function value 0.8),
the measurement value must fall within the range

[-0.79, 0.79].

This approach should be taken into account
specifically at the boundaries of the interval
identification. For example, when establishing a

boundary for foods of mixed composition with milk
fat content the following definition is proposed: if
milk fat content exceeds 51% of the total fat phase, the
product is called milk-based. If it makes less than 50%

— milk-containing, respectively, with a measurement
error of £ 0.5%. In this case, products containing milk
fat in the range of [50.25%, 50.75%)] will not belong to
any specified class with a sufficiently high level of
confidence.

Despite measurement errors, the boundary of
identification classes should be set without taking them
into account. Regardless of the nature (except for the
assumption of distribution symmetry) and the type of
error at the point of the boundary, the indicator function
of both classes will be equal to 0.5. This is a logical
assumption to refer the product to a particular class
if the measurement gave a boundary indicator. In the
above example, this boundary will be the point 50%.

However, if indicator functions of two identification
classes, being adjacent linguistic characteristics of the
same criterion, take the same value of 0.5 at a point, it
makes sense setting a boundary between these classes at
this point. For the multidimensional case, the boundary
will be represented by a hyperplane, but in practice the
dimension exceeding two is rarely considered.

Harrington’s function as an example of indicator
function. One of the applied tools in the qualitative
assessment of the developed food industry identification
methods is Harrington’s desirability function [20].

The idea of Harrington’s function is to transform
the values of the criteria into a dimensionless
desirability scale that allows comparing and combining
the characteristics of products of different nature.
It establishes compliance between experts’ psycho-
linguistic assessments and natural indicators of criteria.
In addition, it has all the necessary practical properties

of the indicator function, which allows using it actively
in fuzzy logic applications.

Generally, Harrington’s function is of the form of:

dx) =e " xeR (19)

where Y(x) is a function that establishes a relation
between the values of the experimental variable
and the dimensionless scale [21]. In practice, it is
almost always linear, being accountable for the
shift and steepness of Harrington’s function curve
in accordance with application needs. It is so as

to correspond to the well-established mapping
of the function value intervals to the linguistic
variable of desirability: ‘“very good” - 0.8, 1;

“good” — 0.63, 0.8; “satisfactory” — 0.37, 0.63; “bad” —
0.2, 0.37; “very bad” — 0.0.37.

If there are n criteria with corresponding desirability
functions d;(x), the consolidated estimate is expressed as

a weighted geometric mean: .

- = wi z?:lwl
d(xy, oy Xy) = (ﬂ d(x)! )
i=1

The useful property of the function is insensitivity
within the range of 0 to 1 values (estimates “very bad”
and “very good”, respectively). It can be used in the
construction of criteria linked to the product’s shelf life.

(20)

16
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Figure 6 Product quality indicator function, classically

In food products — complex biological systems —
quality deterioration is often subject to the exponential
law, and one of the key factors is the change in
microbiological parameters. So, Harrington’s function
can be considered as xo(t) indicator function of Q fuzzy
set — i.e., the products corresponding to public health
regulations. Here storage time ¢ > 0 is used as a product
characteristic.

Supposing a product has 4 days’ shelf-life. Let us
first consider its validity indicator function without the
use of fuzzy logic (Fig. 6).

Identification areas 1 “the product meets the
standards and is ready for consumption” and III “the
product must be disposed of” are shown, respectively.
Within strict logic, at point {4}, it is expected that the
function has a gap of the first kind. As an applicable
rule, the function reflects rather Cinderella’s carriage
qualitative characteristics before and after midnight than
those of the actual food product.

Since shelf life usually has a margin of 20-25%,
consider the following indicator function:

Xo(t) =1— e’

t

@n

The function is a fuzzy negation of Harrington’s
function, but this is natural when smaller values are
assumed to have a larger desirability value. Its graph is
shown in Fig. 7.

In addition to the identification areas I and III,
whose linguistic characteristics remain the same, there
appears area Il — “the product is safe for use, but already
undergoing degrading qualitative changes”. In this
sense, products from identification area II are no longer
suitable for end-users and must be sent for extending
shelf life processing (sterilization, canning, etc.). At
the same time, it should be noted that, for example,
when canning, a fuzzy logic device must also be used
to establish the final shelf life of the product from raw
materials within the boundaries of identification area II.

As it was mentioned above, changes in
microbiological parameters have a direct impact
on the quality of the product. Logically the phases
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of microbiological cultures’ development can be
compared with Harrington’s function identification
areas; in particular, area I corresponds to the lag phase,
area Il — to acceleration and exponential growth of
microorganisms phase, and area III — to deceleration
and stationarity phase. At the same time, substrate and
other biotechnological characteristics of change in the
population of microorganisms are calculated for each
specific product, which may lead to diversities in the
general matches given.

Combination of the product’s quality
characteristics. The construction of indicator functions
is inextricably linked with decision-making systems.
In the case of one criterion (for example, safety, as
described above), the fuzzy logic apparatus gives no
clear advantage over a strict approach. In the end,
all the contractors of the food industry (consumers,
manufacturers, law enforcement agencies, etc.) make
a binary decision whether a particular product sample
complies with a criterion [22, 23]. Due to the fact that
the criterion is unique (for example, expiration date)
they identify the above decision with the function of the
ultimate goal (“buying” vs. “not buying”, “recalling”
vs. “not recalling”, “fining” vs. “not fining”).

In the example with the fety function, three clear
identification areas can be introduced. For them, for
instance, the seller will have a system of specific
actions (I — “selling”, I — “reselling for recycling”,
IIT — “recycling”).

However, even when the second criterion in the
decision-making system is engaged, it is much harder to
establish the precise boundaries of identification classes.

Consider the instance with the safety criterion
with an additional indicator “consumer quality” — a
characteristic that demonstrates the taste and overall
satisfaction from the consumption of the product —
added. In the fuzzy logic the unction of this indicator
decreases faster than the safety function. For example,
for baking and confectionery products, taste profiles
degrade much earlier than the products become unfit
for use. The taste of “fresh bread” is of great value to
the consumer and has its impact on their purchase
preferences, but it is not unique or decisive, as shelf life
is also taken into account.

To construct an example of the consumer quality
function xr(t), let us use the probability theory
apparatus, assuming that fresh (t = 0) product has some
taste profile lost on expiry [24]. In practice, it makes
sense to put an experiment to determine the distribution
histogram of the moment of fresh taste degradation.
However, for the purposes of exemplification, it will be
simulated with the help of Weibull distribution, used in
survival analysis, giving a good approximation in the
study of products’ storage stability [25]. The density of
this distribution fiy (1) (t) has the form:

k
fwen(®) = A—kt"‘le‘(f/’l)k,t >0 22)
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Q (quality)

t, days

Figure 7 Product quality indicator function based
on Harrington’s desirability function

As a quality function we take the survival function
Swk, 2)(t) for the given distribution. It is equal to the
probability that the value of the random variable under
study will exceed ¢, in this case, the probability that
the taste has not yet been lost by 7. For the Weibull
distribution, it has a convenient expression:

Swian(®) = et >0 (23)

Supposing that for a product with the safety function
described by formula (23) the average taste profile is
lost on the second day, an approximation of distribution
parameters with 1 = 2, k = 2 can be derived.

The problem of food products’ seller is to establish
the time when the product should already be sold at the
residual price (the time of entering area III) taking into
account the safety and consumer quality criteria.

If the weight of safety indicator is set at 0.6, and
the weight of consumer quality indicator is set at 0.4,
respectively, a convex criteria combination (8) will take
the form:

Xgaryps(®) = 0.6(1— e ) + 04 e~ /D° (24

Solving the equation (0.63 being Harrington’s

10

08

0.6

X

04

02

“““ xr(t) — consumer quality

Xo(t) — safety criterion
---------- X+mos(® — combined quality function

Figure 8 Convex combination of two consumer functions

function upper exponent for “satisfactory”):

we obtain t = 4. This means that after four days the
product must be sold in traditional or alternative ways.
Guided by rate expiry date only, the seller would get
the value of 5, thus having no time left for operational
maneuvers. The type of function graphs and their
convex combination is shown in Fig. 8.

CONCLUSION

Thus, the apparatus of fuzzy logic allows building
multi-criteria decision-making systems in the food
industry. They help effectively make decisions about
products’ quality and safety and, in the case of violations
and arbitral bodies’ involvement, differentiate the
administrative impact on the contractors of the food
industry.
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