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INTRODUCTION
One of the most difficult tasks in analytical chemis-

try of wine is to identify its authenticity and geographi-
cal origin. Single quality assessment parameters are not 
sufficient to determine whether the product conforms to 
its labels. To establish the authenticity and geographical 
origin of wines, as well as changes occurring in case of 
their adulteration, analytical approaches are being de-
veloped that aim to determine the mineral and isotopic 
composition, study spectral characteristics, and identify 
phenolic and volatile compounds using various methods 
of analysis [1–2]. The identification of authenticity and 
origin criteria is based on obtaining a large amount of 
data and its processing by chemometric methods, which 
reveal hidden relations between the wine’s components 
[1–9]. The combination of modern data analysis tools 

with the capabilities of chemometric methods ensures 
higher accuracy in identifying the geographical origin 
of wines. The information on the elemental composi-
tion of wines can be used to both control the technologi- 
cal process and, in combination with chemometric data 
processing methods, establish the origin of wines [10, 
11]. For example, wines produced in various regions of 
Europe differ quite markedly in the metal content [12], 
which makes it a good criterion for identifying their geo-
graphical origin (Table 1). 

Natural variability of wine quality is determined 
by the grapes growing conditions, such as the climate, 
the microelement composition of the soil, the technolo-
gy of growing grapes, the period of grape harvest, etc. 
The mineral composition of wines can be influenced by 
various factors (soil, climate, relief, etc.); therefore, for 
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identification purposes, many researchers study those ele- 
ments which are least dependent on external factors in a 
given geographical area [3–6, 8, 9, 13, 14]. For example, 
some authors [13] use Sr, Mn, Mg, Li, Co, Rb, B, Cs, Zn, 
Al, Ba, Si, Pb, and Ca.

The content of metals in wines is widely diffe- 
rent: 10–1000 of macroelements (Ca, K, Na, and Mg),  
0.1–10 mg/dm3 of minor elements (Al, Fe, Cu, Mn, Rb, 
Sr, and Zn), and 0.1–1000 μg/dm3 of trace elements (Ba, 
Cd, Co, Cr, Li, Ni, Pb, V, etc.) [12]. Therefore, the prob-
lem of ascertaining the microelement “image” of grapes 
is of practical, as well as scientific, interest [14–18].

In cases when wines from different grape varieties 
have certain organoleptic similarities, for example, co-
lour or astringent, sour taste, it is important to be able to 
identify the grape variety from the microelement com-
position of the wine [19]. In fact, the task comes down 
to establishing the grape variety and geographical origin 
based on the content of microelements in a sample of un-
blended wine.

The purpose of this work was to study a possibility 
of identifying the authenticity and geographical origin of 
red wines, namely Cabernet and Merlot varietal wines, 
based on multi-element analysis with STATISTICA Neu-
ral Network.

STUDY OBJECTS AND METHODS
The study used 144 samples of Cabernet (76) and 

Merlot (68) varietal dry wines produced from 2012 to 
2015 by the main wineries in Krasnodar Region: ZAO 
Zaporozhskoye, OOO Kuban-Vino, OAO APF Fanago-
ria, OOO APK Millstream Black Sea Wines, ZAO AF 
Kavkaz, ZAO Abrau-Durso, ZAO APK Gelendzhik, 
ZAO AF Myskhako, OOO Firma Somelye, ООO AF 
Sauk-Dere, and ООО Soyuz-Vino (Table 2). Theses 

wineries are located in different geographic zones (sub-
zones) of Krasnodar Region: the South-Piedmont zone, 
the Black Sea zone, the Anapa subzone, and the Taman 
subzone. The wines were provided by the manufacturers 
or purchased in retail stores.

The main vineyards of Krasnodar Region are located 
in five cultivation areas: Temryuk (the Taman Peninsu-
la, the Taman subzone), Anapa (the Anapa subzone), the 
Black Sea zone (Gelendzhik and Novorossiysk), Krymsk 
(the South-Piedmont zone), and Novokubansk. The fre-
quency distribution of Cabernet and Merlot samples by 
zone and variety is shown in Table 2

The elemental composition of the wine samples was 
established by atomic emission spectroscopy with induc-
tively coupled plasma using iCAP-6000 (Thermo Scien-
tific). The operating conditions of the spectrometer were 
optimised to detect 20 elements (Li, Na, Mg, Al, K, Ca, 
Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Cd, Ba, and 
Pb). The most sensitive analytical lines were used for 
most of the metals, with the exception of Al, V, Ca, Mg, 
and Sr, for which alternative lines were chosen due to 
spectral overlays. For some macroelements, we needed 
to reduce the signal intensity. When optimising the con-
ditions for element detection, we studied how the ope- 
rating characteristics (generator power, argon flow rate) 
affected the analytical signal of elements in the model 

Table 1. The metal content of wines in different countries [12]

Element Element content, mg/dm3

Czech Republic France Germany Italy Spain
K 553–3056 265–426 480–1,860 – 338–2,032
Na 2.0–110 7.7–14.6 6–25 – 3.5–300
Ca 40–210 65–161 58–200 88–151 12–241
Mg 7.8–138 55–96 56–105 53–60 50–236
Al – 0.56–1.27 – – 0.57–14.3
Cu – n/d–0.48 0.02–0.71 – n/d–3.1
Fe 0.9–5.2 0.81–2.51 0.4–4.2 – 0.4–17.4
Mn 0.28–3.26 0.63–0.96 0.5–1.3 – 0.1–5.5
Rb 0.56–1.20 0.64–0.72 0.2–2.9 0.50–9.90 0.1–5.3
Sr 0.34–0.53 0.22–0.47 0.12–1.28 0.40–1.16 0.28–1.50
Zn – 0.44–0.74 0.3–1.5 – n/d–4.63
Ba 0.09–0.12 0.025–0.24 0.04–0.26 0.07–0.14 0.01–0.35
Cd – n/d–0.0002 – – n/d–0.019
Co n/d–0.018 0.004–0.011 0.004–0.005 0.003–0.006 n/d–0.040
Cr 0.032–0.037 0.030–0.057 0.022–0.078 0.023–0.034 0.025–0.029

Li 0.015–0.052 0.008–0.036 0.005–0.043 – 0.002–0.13

Ni – n/d–0.052 – – 0.005–0.079
Pb – 0.006–0.023 – – 0.001–0.043
V 0.020–0.054 0.06–0.23 0.01–0.14 – 0.026–0.043

*n/d – not detected

 Table 2. Wine sample frequencies by zone 

Variety Two-entry table of frequencies by zone 
Taman 
subzone

Anapa 
subzone

South-Pied-
mont zone

Black 
Sea zone

Total

Cabernet 28 17 13 18 76
Merlot 33 23 12 0 68
Total 61 40 25 18 144
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and sample solutions. We also investigated the mutual 
influence of micro- and macroelements, as well as back-
ground components, of the samples prepared for analysis 
in the model solutions containing variable amounts of 
the elements. The quantification of metals was carried 
out by diluting the wine samples, taking into account the 
data obtained [5, 14–18, 20, 21]. 

The following reference standards were used to study 
the test samples: GSO 7780-2000 (Li), GSO 8062-94 
(Na), GSO 7767-2000 (Mg), GSO 7854-2000 (Al), GSO 
(K), GSO 7772-2000 (Ca), GSO 7205-95 (Ti), GSO (Cr), 
GSO 8056-94 (Mn), GSO 8032-94 (Fe), GSO 7784-2000 
(Co), GSO 7785-2000 (Ni), GSO 7836-2000 (Cu), GSO 
8053-94 (Zn), GSO 7035-93 (Rb), GSO 7783-2000 (Sr), 
GSO 7874-2000 (Cd), GSO 7760-2000 (Ba), and GSO 
7778- 2000 (Pb). All the reagents used in the work were 
of chemically pure (C.P.) grade. 

The chemometric analysis was performed using STA-
TISTICA Neural Networks [22].

RESULTS AND DISCUSSION
The analysis of average element contents (Tables 3, 

and 4) showed a significant dependence of wine compo-
sition on the grape variety and place of origin. For exa- 

mple, the samples from the Anapa subzone had a high 
content of Fe, those from the South-Piedmont zone were 
rich in Ba, Ti, and V, whereas the Taman wines were 
abundant in Na, Mg, and Rb. The Cabernet wines had 
significantly different contents of many elements. For 
example, the Cabernet samples from the South-Pied-
mont zone contained the lowest concentrations of Li, 
Na, Al, Ca, Fe, and Sr, while the Merlot samples from 
the same zone had the lowest content of Al, Ca, Fe, and 
Li. As a rule, standard deviations did not exceed half of 
the average values. This suggests a small variation in the 
concentrations of elements, which means that an ave- 
rage value is a relevant characteristic of metal content 
in wine. The exceptions are Cu, Li, Ni, Na, Rb, and Ti; 
however, standard deviations exceeded the averages only 
in three cases: Cu (Cabernet, Anapa subzone) and Ni 
(Cabernet and Merlot, South-Piedmont zone).

Previously, we applied traditional statistical methods  
of discriminant analysis and classification trees to con-
struct probabilistic-statistical models that allowed 
us to identify the varietal and regional origin of the 
same group of red wines using multi-element analysis  
data [23]. This study looked at a possibility of determi- 

Table 3. Average elemental content and standard deviations 
(s.d.) in Cabernet samples from various geographical zones of 
Krasnodar Region, µg/dm3 

Element Cabernet 
Anapa South-Piedmont Black Sea Taman 

Al 761
389

668
354

1,074
322

777
222s.d.

Ba 91
32

160
69

93
46

100
29s.d.

Ca 60,042
8,432

54,707
10,124

59,864
5,571

65,516
11,564s.d.

Cu 112
128

69
36

109
43

65
31s.d.

Fe 8,098
3,017

3,398
1,150

4,188
972

3,657
915s.d.

K 659,037
96,739

190,177
394,839

1064,056
171,437

983,958
233,821s.d.

Li 19
5

13
8

25
24

28
15s.d.

Mg 74,037
12,846

116,978
21,053

96,779
27,030

141,678
59,802s.d.

Mn 956
319

1,585
362

1,096
165

1,338
436s.d.

Na 21,434
9,680

31,760
27,186

35,268
13,784

33,699
8,590s.d.

Ni 24
10.3

57
65

33
31

21
9s.d.

Rb 514
360

977
290

817
236

1,515
352s.d.

Sr 1,207
207

1,323
504

1,533
720

1,270
284s.d.

Ti 7
3

31
22

16
11

8
3s.d.

Zn
s.d.

366
140

685
222

757
151

481
144

Table 4. Average elemental content and standard deviations 
(s.d.) in Merlot samples from various geographical zones of 
Krasnodar Region, µg/dm3 

Element Merlot
Anapa South-Piedmont Taman 

Al 1,063
381

926
178

1,307
537s.d.

Ba 106
41

148
40

163
42s.d.

Ca 60,117
5,280

55,630
582

63,212
8,701s.d.

Cu 53
45

62
33

47
33s.d.

Fe 13,248
4,214

4,073
606

4,883
1,661s.d.

K 728,426
74,086

1264,236
369,588

695,290
106,987s.d.

Li 25
14

16
7

29
11s.d.

Mg 71,221
6,553

114,459
21,715

158,520
28,073s.d.

Mn 1,181
401

1,410
499

1,519
398s.d.

Na 20,698
10,063

51,380
28,799

62,561
30,852s.d.

Ni 29
17

92
101

112
96s.d.

Rb 563
531

2,063
1786

6,157
2,707s.d.

Sr 1,242
172

1,453
376

1,389
292s.d.

Ti 11
11

33
7

28
15s.d.

Zn 369
83

755
138

526
140s.d.



127

Temerdashev Z.A. et al. Foods and Raw Materials, 2019, vol. 7, no. 1, pp. 124–130

ning the grape variety and geographical origin using 
STATISTICA Neural Networks, followed by a compara-
tive analysis.

To select a number of elements as predictors of neu-
ral network classification models, we used a Spearman’s 
nonparametric correlation coefficient that characterised 
the correlation between the names of wine samples, the 
region of grape origin, and the concentrations of trace  
elements in the samples. In particular, the elements with 
the largest statistically significant correlation links be-
tween the names of regions and wines (Fe, Mg, Rb, Ti, 
and Na) were selected as predictor variables.

In Table 5, which shows average elemental contents 
with standard deviations in both wine varieties from 
different regions, we can see some significant differenc-
es in the average values – the deciding factor for buil- 
ding classification models with neural networks. Most 
distinctly these differences are visualised by means of 
graphs. Fig. 1, for example, shows some box plots dis-
playing Mg content in the Cabernet and Merlot wines 
from various regions. The box plots present ranges of 
values   of a selected variable separately for groups of ob-
servations defined by the values   of a categorical varia-
ble. The rectangles depicted around the midpoints (or 
squares) represent selected ranges of variation, for exam-
ple, the standard error (the ratio of the standard deviation 
to the square root of the sample size). The segments with 
their ends outside the rectangles also reflect ranges of 
variation (average ± 1.96 × standard error). The diagram 
shows that the average values   of Mg content, together 
with variation values, differ significantly between both 
the regions and the grape varieties.

As in [23], we were not able to build adequate neural 
networks that would allow us to identify the grape vari-
ety and region of origin from the concentrations of se-
lected elements. Therefore, the problem was divided into 
two parts. First, networks were built to predict the grape 
variety from the concentrations of Fe, Mg, Rb, Ti, and 
Na. Then, based on the variety predicted (qualitative pre-
dictor) and the same set of elements (quantitative predic-
tors), further networks were built to determine the place 
of grape origin. After assessing their predictive proper-
ties (productivity, number of classification errors, etc.), 
we selected the best network. Productivity is a percentage 
of correctly classified wine samples, with 100% taken as 

maximum. The higher the productivity, the more accurate 
the prediction. To improve predictive accuracy, the sam-
ples were divided into three groups: training, control, and 
validation sample. The most important were the values   of 
adequacy criteria in the test set. By combining various 
network options, we tried to create a network with the 
best predictive capabilities; therefore, at each stage of the 
process, the number of networks was different. 

Building a neural network to establish the varietal 
origin of wine. The program divided 144 wine samples 
into three groups: training set (102), control set (21), and 
test set (21). The productivity of the best network (MLP 
5-5-2), selected out of 50, had high values of 99.02%, 
90.48%, and 95.30% in the training, control, and test 
sets, respectively. MLP 5-5-2 is a combination of letters 
and numbers that represents a topology of a multilayer 
perceptron. The letters stand for the type of a neural net-
work, a multilayer perceptron (MLP); the first numer-

Table 5. Average elemental contents and standard deviations (s.d.) in wine samples, µg/dm3 

Wine Cabernet Merlot
Zone/ subzone Statistic Anapa South-Piedmont Black Sea Taman Anapa South-Piedmont Taman
Fe average 8,098 3,398 4,188 3,657 13,248 4,073 4,883

s.d. 3,017 1,151 973 915 4,214 606 1,661
Mg average 74,037 116,978 96,780 141,678 71,221 114,459 158,520

s.d. 12,846 21,053 27,030 59,802 6,553 21,715 28,073
Na average 21,434 31,760 35,268 33,699 20,698 51,380 62,561

s.d. 9,680 27,186 13,784 8,590 10,064 28,798 30,852
Rb average 514 977 817 1,515 563 2,063 6,157

s.d. 360 290 236 352 531 1,786 2,707
Ti average 7 31 16 8 11 33 28

s.d. 3 22 11 3 11 7 15

Fig. 1. Box plots displaying Mg content in Cabernet and 
Merlot wines.
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al (5) refers to the number of predictor variables in the 
model, a sum of quantitative predictors and qualitative 
predictor values; the second (5) and the third (2) nume- 
rals refer to the numbers of hidden and output neurons, 
respectively.

The network topology is shown in schematic form in 
Fig. 2, where we can see five entries of predictor vari-
ables Xi; five hidden neurons Yj; two output neurons rep-
resenting objects of classification Qk,, the Cabernet and 
Merlot varieties, as well as connections between them in 
the form of weights Wij, Wjk.

Table 6 shows the frequencies of correctly and in-
correctly classified wines in the sample sets. As we can 
see, one Merlot sample from the training and the test 
sets and two Merlot samples from the control set were 
erroneously classified as Cabernet. All Cabernet samples 
were correctly identified in all the sets. The total num-
ber of erroneously classified samples was four out of 144 
(app. 2.8%), i.e. the neural network identified 97.2% of 
the wine samples correctly. In [23], by comparison, the 
classification tree with seven terminal vertices only once 
misclassified a Merlot sample as a Cabernet, based on 
the concentration of seven microelements, i.e. 99.3% of 
the training sample was identified correctly.

The network sensitivity can be used to estimate a 
contribution of each predictor to its predictive proper-
ties: in our case, a contribution of the elements to the 
classification model. The sensitivity values (see Table 7) 
indicate a decreasing sequence of Fe, Rb, Mg, Na, and 
Ti, which represents their contributions to the predictive 
properties of the network. 

Building a neural network to determine the re-
gional origin. The possibility of predicting the wine 
variety based on five microelements made it realistic to 
create a neural network to identify the place of grape 
origin using the trace elements of Fe, Mg, Rb, Ti, and 
Na and the varieties of Cabernet and Merlot. In the 
same way, the program divided 144 wine samples into 
three groups: training set (102), control set (21), and test 
set (21). The best out of 18 networks (MLP 7-9-4) had 
productivity values of 100%, 80.95%, and 100% in the 
training, control, and test sets, respectively. 

As can be seen in Table 8, all the wine samples 
(100%) from the Black Sea zone were classified by the 
network correctly. The next high accuracy area was the 
Taman subzone with 100%, 85.71%, and 100% of cor-
rectly classified samples in the training, control, and test 
sets, respectively. The lowest accuracy was observed 
in the Anapa subzone: 100%, 71.43%, and 100%, re-
spectively. The total number of misclassified samples 
was four out of 144 (app. 2.8%), i.e. the neural network 

Table 6. Wine classification results by variety 
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Control Total 12 9 21
Correct 12 7 19
Incorrect 0 2 2
Correct, % 100 77.78 90.48
Incorrect, % 0 22.22 9.52

Test Total 7 14 21
Correct 7 13 20
Incorrect 0 1 1
Correct, % 100 92.86 95.24
Incorrect, % 0 7.14 4.76

Table 7. Network sensitivity analysis 

MLP 5-5-2 Fe Rb Mg Na Ti
Test 141.09 52.18 40.62 42.80 17.12
Training 21.01 8.42 4.73 2.99 1.41
Control 6.86 3.58 5.63 3.12 2.64

Fig. 2. Neural network to determine the variety of red wines. 
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identified 97.2% of the wine samples correctly. It is note-
worthy that all the samples in the test set were classified 
correctly, regardless of the place of origin.  

The sensitivity analysis showed that the average pre-
dictor contributions to the network’s predictive proper-
ties decreased in the following order: Variety, Rb, Ti, 
Mg, Fe, and Na. We can notice that this sequence is sig-
nificantly different from the one for the variety identifi-
cation network.

In [23], the problem of identifying the place of grape 
origin was solved separately for Cabernet and Merlot 
wines using two methods, discriminant analysis and 
classification trees. The discriminant analysis of Caber-
net and Merlot wines involved 13 and 14 microelements, 
respectively, whereas only 7 and 3 microelements were 
used in the classification trees. However, both methods 
produced 100%-accurate classifications.

The above shows that the traditional methods of clas-
sification analysis, which used a larger number of ele-
ments, achieved a higher predictive accuracy. However, 
the neural networks also showed acceptable prediction 
accuracy with a significantly smaller number of predic-
tors (5). The results were confirmed by the classification 
analysis in the test sample set, with a 100% accuracy 

of region identification and only one mistake in variety 
identification.

Thus, we managed to build adequate neural networks 
for two red wines, Merlot and Cabernet, with high pre-
dictive properties, able to determine the wine variety 
from a minimum set of elements, and then, identify the 
region of grape origin from the variety and the same set 
of elements.

To automate the process of identifying the varietal 
and geographical origin of red wines, we developed a 
program using Visual C# (C Sharp). The network para- 
meters obtained during the training process, their topo- 
logy and weights made it possible to create an autono-
mous software product that can function independent-
ly of STATISTICA. The home screen of the program is 
shown in Fig. 3. If you enter the concentration values   of 
the trace elements Fe, Mg, Na, Rb, and Ti into the cor-
responding boxes on the interface and click ‘Calculate’, 
you will see the variety (Cabernet) and the place of the 
grape origin (Anapa) at the bottom of the screen. 

CONCLUSION
Thus, the use of neural networks enabled us to suc-

cessfully identify both the varietal and the regional ori- 
gin of red wines. It is equally important that a certain 
set of elements in wine contains information not only 
about the grape variety, but also about the place of its 
growth. Traditional and heuristic methods of classi-
fication analysis used with modern data analysis tools 
allowed us to accurately determine the grape variety 
and region of origin from the “elemental” memory  
of the wine.
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