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Abstract: The dynamic models of elements of technological systems with perfect mixing and plug-flow hydrodynamics 
are based on the systems of algebraic and differential equations that describe a change in the basic technological 
parameters. The main difficulty in using such models in MathWorks Simulink™ computer simulation systems is the 
representation of ordinary differential equations (ODE) and partial differential equations (PDE) that describe the dynamics 
of a process as a MathWorks Simulink™ block set. The study was aimed at developing an approach to the synthesis of 
matrix dynamic models of elements of technological systems with perfect mixing and plug-flow hydrodynamics that 
allows for transition from PDE to an ODE system on the basis of matrix representation of discretization of coordinate 
derivatives. A sugar syrup cooler was chosen as an object of modeling. The mathematical model of the cooler is formalized 
by a set of perfect reactors. The simulation results showed that the mathematical model adequately describes the main 
regularities of the process, the deviation of the calculated data from the regulations did not exceed 10%. The proposed 
approach significantly simplifies the study and modernization of the current and the development of new technological 
equipment, as well as the synthesis of algorithms for controlling the processes therein. 
 
Keywords: Mathematical modeling, dynamic systems, sugar syrup cooler, MathWorks Simulink™ 
 
Please cite this article in press as: Khvostov A.A., Magomedov G.O., Ryazhskikh V.I., and Zhuravlev A.A. Matrix dynamic 
models of elements of technological systems with perfect mixing and plug-flow hydrodynamics in simulink. Foods and Raw 
Materials, 2018, vol. 6, no. 2, pp. 483–492. DOI: http://doi.org/10.21603/2308-4057-2018-2-483-492. 

 
INTRODUCTION 

The main way to study the regularities of 
technological heat and mass exchange processes in 
the food industry is to make a full-scale experiment. 
In many cases, it results in a number of 
insurmountable difficulties due to its cost, the ability 
of engineering implementation of the control 
parameters, etc. Due to this, the development of 
adequate and correct mathematical models of 
technological processes that allow us to replace a full-
scale experiment is a relevant task. 

The processes of heat and mass transfer in moving 
media can be simulated on the basis of the Navier-
Stokes equation, but the equations obtained are not 
always suitable for analysis. Therefore, the perfect 
models of a flow pattern have become widespread in 
practice: perfect mixing models (they describe a 

change in concentration, temperature, etc. in 
compounders), plug-flow models (they describe a 
change in concentration, temperature, etc. in the case of 
a plug-flow going through an apparatus), cellular 
models and others [1–3]. The mathematical models of 
such apparatus are called perfect mixing reactors 
(PMR), plug-flow reactors (PFR), etc. 

A Simulink interactive graphical simulation 
environment is widely used for the computer modeling of 
technological processes that allows using block diagrams 
in the form of directed graphs to construct dynamic 
models, including discrete (continuous and hybrid), non-
linear models and models with singularities. In addition, 
the Simulink environment includes the tools for building, 
modeling and studying control systems which allows for 
the simulation of a process and control system within a 
single integrated environment [4]. 
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When modeling perfect reactors, the conversion of 
the equations to describe a technological process into a 
set of blocks of the visual programming environment of 
Simulink is necessary. In the case of systems of ordinary 
differential equations (ODE), an input signal integration 
unit and a MathWorks™ numerical methods library are 
used, as well as the method for representing ODE or an 
ODE system in the form of a structural Simulink model 
[5, 6]. In the case of partial differential equations that 
describe, for example, plug-flows, the heat conductivity 
equation, etc., there is a problem of bringing PDE to an 
ODE equation or system. One of the approaches used in 
the transition from PDE to ODE is the use of integral 
transformations, for example, Fourier transformations 
and Laplace transformations [7, 8], and the disposal of 
spatial derivatives. It is not always possible to obtain a 
solution to such equations in analytical form. In addition, 
the implementation of direct and inverse integral 
transformations by means of Simulink for an arbitrary 
input signal is difficult. The other approach is to use 
numerical methods for solving PDE (finite elements, 
finite differences, etc.) and to integrate program blocks 
into the structural model of Simulink using the custom 
functions implemented on the basis of such 
programming languages as MathWorks and universal 
ones like C ++ [9]. In this case, it is possible to 
implement the entire arsenal of available tools for the 
numerical solution of PDE, but any modification of an 
object model entails the need for changing the function 
code and debugging it, thereby violating the object-
oriented principle of Simulink – the separation of the 
internal structure and interface of a model. One of the 
approaches is based on the discretization of only the 
spatial variable using the finite difference method, while 
the derivatives with respect to time remain continuous 
and PDE is represented as the Cauchy problem for the 
ODE system [10]. The implementation of each equation 
of the ODE system results in the formation of rather 
cumbersome structural models in Simulink, and the 
compact representation of such systems in a matrix form 
is relevant [11, 12]. In this case, it is necessary to replace 
the expansion of spatial derivatives with matrix 
equations [12]. [13] shows such a representation of a 
one-dimensional heat conductivity equation for 
Simulink. 

Thus, the relevant task is to develop a method for 
representing typical perfect reactors using matrix 
ordinary differential equations (MODE) and to 
implement structural models therewith in Simulink. 

 
STUDY OBJECTS AND METHODS 

To synthesize the matrix dynamic model of a 
typical perfect reactor, it is necessary to perform the 
following sequence of actions: 
– to select the model of a perfect reactor suitable for 
describing the structure of the flow in process 
equipment (this issue is considered in detail in the 
special literature, for example, in [1–3]); 
– to draw up the corresponding differential equation. 
As a result, for each perfect reactor, one or more ODE 
or PDE are obtained with the corresponding initial and 
boundary conditions; 

– to solve the resulting equation or a set thereof with 
respect to the highest derivative with respect to time; 
– to discretize spatial derivatives (in the case of their 
presence)  in accordance with the accepted form of 
finite-difference approximation;  
– to replace each PDE by a set of ODE using the 
replacement of partial derivatives with respect to the 
spatial variable by the corresponding matrix equation. 
For example, the first derivative of the temperature 
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where is the decomposition matrix of the first 
derivative, and 
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is a vector to define the boundary condition.  
The second derivative can be defined as 
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is the decomposition matrix of the second derivative, 
and 

(1) 
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is a vector to define the boundary conditions.  
– then, in accordance with the procedure described  
in [5], to draw up a structural diagram of a perfect 
reactor model in the form of Simulink blocks that solve 
MODE taking into account the fact that the signals 
transmitted from block to block are vectors and 
matrices and the corresponding multiplication 
operations will be performed according to the rules of 
matrix multiplication. In this case, the time derivatives 
will be integrated using numerical methods from the 
Simulink library;  
– to define the parameters of the model that 
characterize flow hydrodynamics, the geometry of 
perfect reactor models and the thermophysical 
properties of process media; 
– to create input and output streams to build process 
equipment models in the form of a system of perfect 
reactors and additional subsystems, if necessary; and 
– to design a reactor model in the form of a subsystem 
in the Simulink format. 

Let us consider the synthesis process of a dynamic 
matrix mathematical model using a sugar syrup cooler 
as an example which is used for fondant sweet 
processing lines [14]. The cooler is a cylindrical  
body 1, inside which a rotating screw 2 (рассмотрите 
pushes sugar syrup forward (Fig. 1). The body 1 is 
equipped with a cooling jacket made in the form of a 
closed spiral canal (CSC) 3 cooling water (a coolant) is 
fed through. As a result of the heat exchange between 
the syrup and the coolant through the wall of CSC that 
separates them, the temperature of the syrup decreases, 
which results in the crystallization of sucrose from the 
fondant syrup and the formation of fondant mass. 

The quality indicators of the finished product 
(fondant mass) are the size of sucrose crystals and their 
proportion in the total volume of fondant mass. In turn, 
the disperse composition of fondant mass depends 
entirely on both the cooling parameters of fondant 
syrup–temperature, the intensity of removal of heat 
from the syrup–and its thermophysical and rheological 
properties that change during the crystallization 
sucrose process [14]. 

To model the heat exchange between the syrup and 
the coolant, let us select the models of perfect reactors. 
In view of the intensive mixing of sugar syrup with a 
rotating screw, the complexity of the mathematical 
description resulting from the mixing of the three-
dimensional temperature pattern, as well as the necessity 
of conjugation of the geometric coordinates of cooling 
water and sugar syrup flows, let us estimate in the first 
approximation the average temperature of sugar syrup 
according to the length of the cylindrical body 1. 
Averaging the sugar syrup temperature according to the 
length of the body by integrating the PMR equation with 
respect to the variable x and dividing it by the length of 
the body, we obtain an equation that corresponds to PFR 
in structure. For the cooling water flow, let us neglect 
the temperature distribution over the cross-sectional area 
of the canal and choose a PMR model. The perfect 
reactors are physically separated by a wall through 
which there is a heat exchange between the coolant and 
sugar syrup. Let us neglect the thermal effects as a result 
of the process of crystallization of sucrose from the 
syrup, as well as heat exchange with the environment. 
Let us assume that the wall temperature is constant along 
the length. 

Let us consider the synthesis of the PFR model in 
accordance with the diagram in Fig. 2. 

If the structure of the syrup flow corresponds to the 
PFR model, an equation of a temperature change taking 
heat transfer into account can be used for the 
mathematical description of this flow [2]. It will be an 
ordinary differential equation with respect to the 
temperature of the syrup TC  
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Fig. 1. 1 – is cylindrical body; 2 – is screw; 3 – is 
closed spiral canal.  

where Vc is the volume of the perfect mixing area, m3; 

с  is density of sugar syrup, kg/m3; PсC
is the specific 

heat capacity of sugar syrup, J/(kg × K); с  is the 

volumetric flow rate, m3/s; 
вх
сT is the flow temperature 

at the inlet to the perfect mixing area; Fc is the surface of 
heat exchange between the syrup and the wall of CSC, 
m2; КТс is the coefficient of heat transfer from the syrup 

to the center of the wall of CSC, W/(m2 × K);  стT t
is 

the temperature of the center of the wall of CSC, °C.  
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Fig. 2. The syrup flow chart. 
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Fig. 3. Simulink model corresponding to Eq. 3.  
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Fig. 4. The coolant flow chart. 

 
To solve the equation in Simulink, let us use the 

technique described in [5] and represent Eq. 3 in the 
form of Simulink blocks (Fig. 3) having previously 
solved Eq. 3 with respect to the derivative.  

Let us consider the synthesis of the model of a 
plug-flow reactor (Fig. 4). 

If the structure of the flow corresponds to the plug-
flow model (the model is based on the assumption that 
the temperature is constant in the cross section and 
there is no longitudinal mixing), then for the 
mathematical description of this flow, an equation 
taking heat transfer into account can be used [1]  
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;  ,вT x t
is the function of spatial and time distribution of temperature of the coolant flow; вV

is the 

volume of the plug-flow area, m3; в is the density of the coolant, kg/m3; PвС
is the specific heat capacity of the 

coolant, J/(kg × K); в is the volumetric flow rate, m3/s;  0x вT t
is the flow temperature at the inlet to the plug-flow 

area; Fв is the surface of heat exchange between the coolant and the wall of CSC, m2; KTв is the coefficient of heat 
transfer from the coolant to the center of the wall of CSC, W/(m2 × K).  

Let us bring Eq. 4 to a finite-difference form and solve it with respect to the derivative  
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Let us define the vector of the current temperature at the points of coordinate partitioning and the initial conditions 

PMR

(5) 

(4) 
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Let us represent the first derivative in the form of a 
matrix expression [4]  
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is a vector to define the boundary condition. 
Then let us write the ODE system (5) as a matrix 

ODE 
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and represent it in the form of a structural Simulink 
model (Fig. 5). 

Since the statement of the problem implies that the 
heat capacity of the wall that separates the heat carrier 
flows cannot be neglected, then these equations will be 
supplemented by an equation of a change in the 
temperature of the wall that separates the media Tст(t) 
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where mст is the wall mass, kg; PстC
 is the specific 

heat capacity of the wall, J/(kg × K);  вT t
 is the 

average temperature of the coolant over the entire 
length calculated as 
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Let us represent it in the form of a structural 
Simulink model (Fig. 6). 

 

 
 

 
Fig. 5. Simulink model corresponding to Eq. 5. 
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Fig. 6. Simulink model corresponding to Eq. 8. 
 

0x x Lx

 0cтT

 0 ,вT x t

 0cT

 ,вT x t

 cтT t

 cT t

 ,в LT x t

 cтT t

 cT tРИС

РИВ

 
Fig. 7. The syrup, wall and coolant flow chart. 

 
As a result, a set of subsystems for modeling perfect reactors is formed. To compile a cooler model, it is only 

necessary to connect the subsystems into a single design scheme in accordance with Fig. 7 and set the model 
parameters.  

In this case, the mathematical model of the cooler can be described by a system of scalar and matrix ODE  
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with the parameters [14, 15]: the heat capacity of the 

coolant PвC
 = 4190

J

kg К ; the heat capacity of the 

wall PстC
 = 385

J

kg К ; the heat capacity of the syrup  

PсC
 = 2500

J

kg К ; the heat exchange area of the  
 

coolant-wall вF  = 1.3 m2; the heat exchange area 
syrup- 
 

wall сF  = 1.56 m2; the wall mass стm  = 25.465 kg; the 

cross-sectional area inside CSC вS
= 0.000314 m2; the 

coefficient of thermal conductivity of the wall  

ст  = 400

W

m К ; the density of the wall material 

(copper) м = 8900
3

kg

m ; the density of the coolant  

Wall

(11) 

PFR 

PMR 
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в  = 1000
3

kg

m ; the density of syrup с  = 1500
3

kg

m ;  
 
the coefficient of heat transfer from the coolant to the 

wall в  = 643.3
2

W

m К ; the coefficient of heat transfer 

from the syrup to the wall с  = 820.5
2

W

m К ; the 
coefficient of heat transfer from the syrup to the center 
of the wall 

 

1
1

2

Tс
ст

с ст

K


 




= 819.672
2

W

m К ; the coefficient 
of heat from the coolant to the center of the wall 

1
1

2

Tв
ст

в ст

K


 




 = 642.261
2

W

m К ; the discretization 

interval x = 2.07 m; the number of discretization 
elements along the length N = 10; the thickness of the 
wall of CSC, ст = 0.002 m; the length of  
CSCL = 20.7 m; the volumetric flow rate of the coolant 

в  = 0.00096

3m

s ; the syrup volumetric flow rate  

с  = 0.0001

3m

s ; the initial temperature of the coolant 

0вT
 = 15°С; the initial temperature of syrup  

0сT
 = 105°С; the initial wall temperature 0стT

 = 25°С; 
the volume of the area of PFR Vв = 0.009 m3; and the 

syrup volume in PMR сV
 = 0.36 m3. 

The structural model in the form of Simulink blocks 
is shown in Fig. 8, the simulation results are shown in 
Figs. 9–11. The studies and computer experiment were 
carried out at the Voronezh State University of 
Engineering Technology. 

 
RESULTS AND DISCUSSION 

The data in Fig. 9 show that the sugar syrup is 
cooled from the initial temperature of 105°С to 60°С 
within 600–800 sec, which is consistent with the 
technological regulations for fondant mass production. 
The further cooling of syrup does not result in a 
decrease in the temperature of the finished product. 
The deviation of the calculated data from the 
regulations did not exceed 10%. 

The model developed with the help of this approach 
makes it possible to obtain the estimates of 
temperatures at the outlet from the cooler in real time 
(Fig. 9a) which makes it possible to study the dynamics 
of the technological process and synthesize a control 
system. It is also possible to estimate the temperature 
distribution in terms of both the time and length of the 
heat exchange surface of CSC (Fig. 9b). In addition, by 
varying the parameters of a mathematical model, it is 
possible to estimate their effect on the technical and 
economic indicators of a process, for example, when 
changing the material which CSC is made of (Fig. 
10a), and also to predict a change in the dynamic 
characteristics of a process (Fig. 10b). 

When the syrup is cooled, its viscosity significantly 
changes which entails a change in the hydrodynamics 
of the syrup flow and conditions of heat exchange 
between the coolant and syrup through the wall that 
separates them. The introduction of a temperature 
correction in the calculation of syrup viscosity makes it 
possible to take into account a change in the coefficient 
of thermal conductivity from the syrup to the wall of 
CSC. For example, using the data of [16], let us 
approximate the dependence of syrup viscosity on 
temperature using the Arrhenius equation 

 

   
6 48035.124

3.057 10 exp
8.31 273с c

c

T
T

   
   

   . 
 

Then, taking into account the dependence of syrup 
viscosity on temperature, it is possible to estimate the 
coefficients of heat transfer and thermal conductivity 
from the syrup to the wall of CSC for each 
temperature and to clarify the syrup cooling dynamics 
(Fig. 11). In this case, the heat transfer and thermal 
conductivity coefficients are calculated with the help 
of an additional Matlab Function block from the 
Simulink library that performs the continuous 
calculation of the heat transfer and thermal 
conductivity coefficients according to the current 
values of syrup temperature delivered to the block 
input. 

The further refinement of the cooler model can be 
due to, first, taking into account the thermal effects 
resulting from the crystallization of sucrose from the 
syrup and, secondly, taking into account the design 
features of a typical fondant beater (feeding cooling 
water into the shaft of the conveying screw, 
separating the machine body and cooling water jacket 
into three sections in each of which the heat is 
removed from the syrup with various intensity). 

 
 
 
 
 
 
 
 
 
 

(12) 
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Fig. 8. Simulink model for the syrup cooler. 
 
  

wall temperature 

PFR liquid temperature 

initial condition 

initial 
condition 

initial conditions 

syrup outlet 
temperature 

PMR syrup 

water temperature 

syrup temperature 

size vector 

boundary condition 5 x 1 
1st element input Tv (x = 0) 

sum 

 

averaging Tv over the length 

input data 
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200             400             600            800 

              Time, sec 

 

 cooling water temperature,  CSC wall 
temperature, syrup temperature 

 

(a)  (b) 

Fig. 9. The temperatures of: a) cooling water, wall and syrup, b) cooling water distributed along the closed spiral canal. 
 

 
            aluminium             copper           stainless steel 

 

 
0                50              100             150           200 

Time, sec 

 syrup temperature after cooling, deg. 
 coil wall mass, kg 

 copper,  aluminium,  
 stainless steel 

(a)  (b) 

Fig. 10. The CSC material impact on: (a) syrup temperature after cooling and the CSC mass, (b) coolant temperatures. 
 

 
100    200  300    400     500    600   700   800 

        Time, sec 

 syrup temperature taking into account the 
temperature correction,  syrup temperature without 

taking into account the temperature correction,  
 CSC wall temperature taking into account the 

temperature correction,  CSC wall temperature 
without taking into account the temperature correction 

 cooling water temperature taking into account the 
temperature correction,  cooling water temperature 
without taking into account the temperature correction 

 
Fig. 11. Syrup viscosity impact on the syrup, coolant 
and wall temperatures. 

CONCLUSION 

The presented approach makes it possible to 
implement the mathematical models of perfect reactors 
in Simulink by discretizing the spatial variable and to 
pass over to matrix ordinary differential equations, 
which makes it possible to convert them into Simulink 
blocks. The approach is also applicable to other models 
of perfect reactors, which makes it possible to build the 
libraries of typical perfect reactors of Simulink for the 
synthesis of heat and mass transfer equipment that 
makes it easy to integrate them into a single system of 
synthesis, study, and debugging of Simulink control 
systems. Within the framework of Simulink simulation 
systems, a further refinement of the obtained simplest 
models based on perfect reactors by introducing 
variable model parameters, nonlinearities, control 
circuits, etc. is possible. This significantly simplifies 
the study and modernization of the current 
technological equipment and the development of new 
equipment, as well as the synthesis of control 
algorithms for the processes therein.  
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