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INTRODUCTION
In the Altai region, researches on the industrial use of 

sea-buckthorn berries began almost simultaneously with 
the cultivation of the plant. Nowadays, sea buckthorn 
covers enough acreage to allow for its industrial pro-
cessing. There have been in vitro and in vivo studies of 
sea-buckthorn products (juices, jam, oil, etc.) on humans 
and animals. These nutrition and pharmaceutical pro- 
ducts proved to have an anti-inflammatory, antitumoural, 
and antisclerotic effect on a living organism [1, 2]. As a 
rule, such preventive and therapeutic effect is attributed 
to phenol, vitamins, mineral substances, amino acids, 
fatty acids, and phitosterols. Sea buckthorn contains up 
to 11 satureted as well as mono- and polyunsarurated 
fatty acids. In addition, the berries contain α- and γ-to-
copherols and α-tocotrienol, as well as some phitosterols, 
including campesterol, β-sitosterol, ∆5-avenasterol, cy-
cloartenol, and gramisterol, which have a strong antio- 
xidant effect [3, 4]. Sea-buckthorn berries are known to 

contain a large amount of cartienoids and their ethers, 
such as astaxanthin, zeaxanthin, zeaxanthin-palmitate,  
α-, β-, and γ-carotenes, cis-β-carotene, β-cryptoxanthin, 
lycopene, lutein-palmitate-myristate, and other biologi-
cally active compounds [5–9].

Nevertheless, the huge potential of sea-buckthorn is 
hardly used for fruit wine production because of a high 
oil content in sea-buckthorn berries. Thus, the berries are 
difficult to process, and the resulting drinks are sensory 
unstable [10].

According to the previous research [11], the low sta-
bility of sea buckthorn wine is probably connected with 
high-reactive substances of the phenol origin in its com-
position. The substances are prone to copolymerization 
and condensation reactions; as a result, the drinks tend to 
be of dark colour. A high concentration of phenol sub-
stances proved to be an essential feature of sea-buckthorn 
berries. Sea-buckthorn flavonoids are represented by 
catechins, leucoanthocyanins, prosyanidins, flavan-3-ol, 
and, to a lesser extent, by flavones. Also, the berries con-
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tain coumarins and tanning substances [12–16]. Never-
theless, the polyphenols are able to inhibit the formation 
of Maillard reaction products. Presumably, the mecha-
nism can be explained by the fact that some polyphenols 
might interact with the intermediate products of the Mail-
lard reaction: polyphenolic amides obstruct the reaction 
and result in sugar and amino acid degradation products 
of dark colour. 

The phenol compounds of grape and fruit wines af-
fect such sensory properties as colour and taste [18–20]. 
Excessive phenol compounds make white wines rough 
and harsh. Usually, the rough taste is attributed to the 
tanning substances [21–23], e.g. prosyanidins. The ef-
fect of polyphenols on the colour of white wines is deter-
mined by both enzymic and nonenzymic oxidation when 
exposed to oxygen. As a result, the wine acquires amber 
colour, which may turn dark-brown if exposed to oxygen 
for too long. Such changes of colour are inappropriate for 
table wines [20].

Activated carbon can improve the sensory charac-
teristics of sea-buckthorn wines. In fact, activated car-
bon of Granucol series is often used to improve the taste 
and colour of grape wine [32, 33]. This brand of carbon 
can be used for different technological purposes. For in-
stance, Granucol GE adsorbs unwanted taste and smell; 
Granucol FA is used to remove the reddish tint in young 
wine; Granucol BI can lower the amount of phenol and 
monomer substances. Fruit wine industry has developed 
a lot of ways to improve such indices of must as sugari-
ness or acidity. However, there are little experimental 
data on how to lower and stabilize polyphenols, in spite of 
the fact that it is polyphenols that are responsible for the 
harsh and rough taste, as well as browning during storage. 

Eye appeal is an important aspect that determines the 
reaction of customers when they choose wines and winy 
beverages of an unfamiliar trademark [34]. Thus, com-
petitiveness requires that local wines should be attractive 
without losing their shelf stability. Appearance can be 
objectively assessed by analysing chromatic character-
istics, e.g. colour intensity, tint, and coordinates in the 
CIE Lab system [35–40]. By determining the chromatic 
properties of wine and winy beverages, it is also possible 
to measure its yellowness, since yellowness has recent-
ly been introduced into control practice for many nutri-
tion products. It characterizes the change in colour of a 
test sample from clear or white toward yellow [41–43].

The research objective was to analyse the effect var-
ious amounts of Granucol activated carbon produce on 
the polyphenols content and the chromatic and sensory 
characteristics of dry sea-buckthorn wine.  

STUDY OBJECTS AND METHODS
The research featured dry wine materials of sea 

buckthorn (Novost Altaya variety) harvested in 2014 in 
Barnaul at M.A. Lisavenko Research Institute of Sibe-
rian Gardening. The initial amount of polyphenols was  
480 ± 4.5 mg/dm3. The wine materials were produced by 
submerged cap fermentation with the help of Oenoferm 
yeast, race LW 317-28 (Erbslöh Geisenheim AG, Germa-

ny). Clarification of the wine material was performed us-
ing 2.0–2.5 g/dm3 of bentonite. The final filtration of the 
wine materials was made with the help of a SEITS-KS80 
filter-paperboard. The ageing time of the wine materi-
al was 42 weeks at 5 ± 1°C. The general amount of SO2 
was 80 mg/dm3. Granucol carbon (Erbslöh Geisenheim 
AG, Germany) was applied in rising concentrations from  
10 to 150 mg/100 ml at 10 mg/100 ml intervals.

The mass concentration of general phenolic substance 
was determined according to the colourimetric method 
with the Folin-Ciocalteu reagent [44–46] on the spec-
trophotometer PE-5300VI (Ecros, Russia). The samples 
were preliminary diluted by 100.

The optic and chromatic characteristics of the sam-
ples before and after activated carbon treatment were 
determined in accordance with the methodic recommen-
dations compiled by the OIV [47, 48] with the help of a 
UV-1800 spectrophotometer (Shimadzu, Japan).

Based on the spectral characteristics of the wine ma-
terials, we calculated:
– the value of colour intensity (I) represented by the sum 
of absorption values of the wine materials at the wave 
lengths of 420, 520, and 620 nm: 

620520420 AAAI ++= ;                  (1)

– the value of wine material colour tint (N) represented 
by the ratio of absorption value at the wave lengths of 
420 and 520 nm:

520420 AAN = ;                          (2)

– the value of yellowness (G, %) according to the formu-
la introduced in [49]:

 
Y

ZXG 10006.128.1 
  

445550625 21.035.042.0 TTTX   

495550625 17.063.020.0 TTTY   

445495 94.024.0 TTZ   

,                    (3)

where X, Y, and Z are coordinates of colour in the CIE 
system: 
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,          (5)
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  

445550625 21.035.042.0 TTTX   

495550625 17.063.020.0 TTTY   

445495 94.024.0 TTZ   ,                (6)

where T625, T550, T445, and T495 are coefficients of transmit-
tance relative to distilled water at the corresponding wave 
lengths, %.

To analyse the effect of Granucol carbons on the 
sensory characteristics of sea-buckthorn wines, different 
amounts of the activated carbon were added into the pro-
cessed and aged wine materials and stirred for two hours. 
Finally, the wine was filtered from carbon. After that, the 
samples were tested for mass concentration of polyphe-
nols and the optic characteristics of wine materials. 

RESULTS AND DISCUSSION
Fig. 1 shows the dynamic changes in the amount of 

the phenolic compounds in the wine material according 
to the concentration and type of Granucol carbon. 

Fig. 2 shows that the usage of Granucol carbon re-
duced the polyphenol concentration in the sea-buck-
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Fig. 1. Effects of the mass concentration of the phenolic 
substances in the sea-buckthorn wine material on the concen-
tration and type of Granucol carbon.

Fig. 2. Isotherms of adsorption of phenolic substances in 
sea-buckthorn wine material by different types of Granucol 
carbons. 
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Fig. 3. Effects of the concentration and type of Granucol car-
bons on the colour intensity. 
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Fig. 4. Effects of the concentration and type of Granucol  
carbons on the tint of the wine material.
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Fig. 5. Effects of concentration and type of Granucol carbon 
on the yellowness of the sea-buckthorn wine material.

thorn wine material. Granucol BI demonstrated the best 
results. In general, this type of carbon helped lower the 
amount of phenolic substances in the sea-buckthorn wine 
by 2.1 times when the maximum carbon amount was  
150 mg/100 ml. Granucol FA and Granucol GE also low-
ered the amount of polyphenols. However, they were less 
effective and reduced the amount of polyphenols only by 
1.52 and 1.56 times, respectively. Fig. 2 shows the em-
piric isotherms of phenolic substances adsorption by dif-
ferent activated Granucol carbons. 

We calculated the specific adsorption by the follow-
ing formula:

V
т
СС

А 


 0  ,                             (7)

where C0  is the mass concentration of phenolic substanc-
es in the starting wine material, mg/dm3;

C is the mass concentration of phenolic substances in 
the processed wine material, mg/dm3;

m is the mass of the used sorbent, mg; and
V is the volume of the processed solution, dm3.
Here we can see that the most effective concentration 

of Granucol BI was 20–60 mg/dm3. Probably, this type of 

carbon absorbs the phenolic substances that exhaust the 
media due to their monomer nature.

The optical properties of wine material help deter-
mine its quality, age, and technological peculiarities. For 
instance, one can define the age and composition by the 
colour of wine. Any deviations from the colour norm 
mean that the wine in question is defective.    

A Shimadzu UV-1800 spectrophotometer was used 
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Fig. 6. Effects of the concentration and type of Granucol carbon on the displacement of the coordinates X and Y (according to the 
CIE 1931 chromatic system of coordinates). 

 

0
1
2
3
4
5
6
7
8
9

Ананасный тон 

Цветочный тон 

Медовый тон 

Дрожжевой тон 

Сивушный аромат 

Кислый вкус 

Терпкий вкус 

Гармоничность 

Контроль Granucol BI Granucol FA Granucol GE
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to measure the optical density of the wine material in 
cuvettes with a path length of 10 mm. To define the in-
tensity and tint of the colour, the optical density was 
measured at the waves of 420 and 520 nm. To obtain the 
trichromatic coordinates, we calculated the transmittance 
at 445, 495, 520, and 650 nm. The results were calculat-
ed according to the OIV methods [41, 42]. 

The following dependency graphs feature the colour 
intensity, tint, and yellowness according to the concentra-
tion of Granucol carbons (Fig. 3, 4).

The physical-and-chemical analysis and simple vi-
sual observation proved that Granucol carbon lowered 
the colour intensity. A larger mass of Granucol carbon 
changed the colour of the wine material from intense am-
ber to light yellow. Granucol FA and Granucol GE also 
reduced the intensity of colour. However, the wines vi-
sually maintained the brown tint, which made them less 
attractive.

Yellowness is another factor that characterises the 
state of wine and wine materials, but fixed standards 
have been established for grape wines only [43]. Cur-
rently, yellowness is not used for sea-buckthorn wines 
assessment or for fruit wines in general. Nevertheless, we 
calculated the index of yellowness of our samples. Fig. 5 
shows the changes of yellowness according to the con-
centration and type of Granucol carbon. 

Remarkably, Granucol BI proved to be the most ef-
fective type of carbon to improve the wine colour: not 
only did it lower the amount of phenolic substances, but 
it also improved it by making the wine more visually at-
tractive. Granucol FA and Granucol GE also improved 
the colour and removed partly the brown tint, but their 
amounts were higher. 

The trichromatic colour coordinates of wine (xyz) and 
the subsequent coordinates X and Y were calculated ac-
cording to the CIE Lab system of coordinates. Granucol 
carbon changed the coordinate X (the chromatic green-
red axis) and produced almost no change on the coordi-
nate Y (the chromatic yellow-blue axis) (Fig. 6a and 6b). 

The beneficial effect of Granucol carbon on the aro-
ma and taste were also quite remarkable (Fig. 7).

CONCLUSIONS 
The present research proved that the activated carbon 

of the Granucol series can improve the sensory properties 
(taste and colour) of sea-buckthorn wine. The experiment 
demonstrated the effect of the concentration of carbons 
on the chromatic properties of wine. Granicol BI proved 
to be the most effective type of carbon to remove brown-
ing caused by oxidation, and Granucol GE greatly im-
proved the sensory perception of taste and aroma.
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