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Abstract: A numerical model is constructed and dynamics of the cylindrical localized area of turbulent disturbances (turbulent spot) in 
a longitudinal horizontally homogeneous shear flow of a passive stratified fluid is studied. The results of calculations show a significant 
turbulent energy generation by shear flo . The problem of flow similarity with respect to the shear Froude number for sufficiently large 
values of this parameter is considered.
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INTRODUCTION
Evolution of localized regions of turbulent fluid

(spots of turbulent) has a decisive influence on 
formation of a fine microstructure of hydrophysical 
fields in the ocean [1]. A fairly detailed analysis of 
studies in the field of the turbulent spot dynamics can 
be found in [2–4]. The problem of evolution of the 
turbulent mixing zone in momentumless turbulent 
wake in a transverse shear flow of a homogeneous 
fluid is considered in [4]. It is shown that a shear flow
may lead to significant deformation of a turbulent area 
and generate a substantial turbulent energy prolonging 
the wake lifetime. Flow similarity with respect to the 
shear Froude number, equal to the ratio of the product 
of characteristic velocity of turbulent perturbations in 
the initial time and the characteristic time, caused toby 
shear flo , to the initial size of the turbulent region is 
shown D. Dynamics of turbulent spot in a transverse 
linear shear flow of linearly stratified fluid is studied 
in [5]. It was found that a shear flow in comparison 
with the case of a homogeneous fluid causes a further 
significant distortion of the pattern of internal waves 
generated by the turbulent spot. This paper describes a 
plane non-stationary problem of dynamics of turbulent 

disturbances in the longitudinal shear flow of passively 
stratified fluid. At the initial moment, a turbulent area 
represents an infinitely long cylinder directed along the 
axis x. Plane section of a cylinder (y,z) is shown in Fig.1; 
the figure also shows a linear shear flow directed along 
the axis of the cylinder. A numerical flow model based 
on the two-parameter semi-empirical turbulent model is 
built. The results of calculations illustrate the dynamics 
of turbulent fluid area, accompanied by a significant
turbulent energy caused by the effect of a shear flo . 
The problem of a flow similarity with respect to the 
shear Froude number is discussed.

Fig. 1. Flow diagram at the initial moment.
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PROBLEM STATEMENT
To describe the flo , a mathematical model based on 

the e⁓ε model of turbulent is used:
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In equations (1)–(5), the value ( , , )U U t y z=  
is a longitudinal horizontal velocity component; 

1ρ  is an averaged density defect: 1 sρ = ρ −ρ , 
( )0 1s a zρ = ρ − , const 0a = > ; 2′ρ  is a dispersion of 

the density fluctuations; e is an turbulent  energy, ε is a 
dissipation rate; P is a turbulent  energy generation by 
gradients of averaged motion;  is a sign of averaging; 
terms containing factors in the form of molecular 
viscosity and diffusion coefficie ts were rejected on the 
assumption of their smallness. 

The turbulent viscosity and diffusion coefficients are 
defined as follows

2
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Values 0.136,cµ =  1.3σ = , 0.208cρ = , 1 0.087c ρ = , 
1.25Tc = , 1 1.44cε = , 2 1.92cε = are known empirical 

constants [6, 7].

For 0t t= , the following initial conditions were 
specified

0 1( , , ) ( )e t y z r= Φ , 0 2( , , ) ( )t y z rε = Φ , 

 0 0( , , ) ( )sU t y z z e D U z= α = , 2
1 0′ρ = ρ = , 

y−∞ < < ∞ , z−∞ < < ∞ , 0t t= .

Here, const, α =  D – is a diameter of turbulent 
mixing zone in the initial moment 0 0( ,0,0)e e t= . 
Functions 1( )rΦ , 2 ( )rΦ , 2 2 2r y z= +  are finite bell-
shaped functions, consistent with the experimental 
data of Lin and Pao (Lin, Pao) on decay of 
momentumless turbulent wake in a homogeneous fluid
[8]. For 2 2 2r y z= + →∞  the following conditions 

2
1 0e ′= ε = ρ = ρ = , ( )sU U z= , 0t t≥  were 

established.

In the calculations the boundary conditions 
corresponding to r →∞ , were shifted to borders of 
a sufficiently large rectangle whose dimensions were 
chosen based on the results of numerical experiments. 
For reasons of symmetry the solution is sought in the first
quadrant of the plane (y ,z ). The boundary conditions on 
the coordinate axes were taken as follows:
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Variables of the problem can be nondimensionalized 
with the use of characteristic scales of length D, 
velocity 0 0U e=  and density 0aDρ . With this 
nondimensionalization, a characteristic flow time is 
a quantity 0.cT D e=  In such a case, the form of 
equations (1)–(5) does not change; in the future, if 
necessary, dimensionless quantities will be designated 
as*. The problem has another characteristic time 

 ( ) ( ) 11
0 .s sT dU dz e D

−−= = α  By analogy with the 
well-known density Froude number; let us introduce 
a shear Froude number 1

0s sF e T D −= = α  (see also 
[4]). In this case, * * .s sU z F=  is valid. In equations (2), 
(3), as mentioned above, the quantity P – is an energy, 
generated by turbulent gradients of the averaged flow
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On the assumption of the concept of dimensionless 
quantities *

0 ,s sU U e=  * ,z z D=  we obtain 
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0 0

* *
1 1 .s s s

s s

e edU dU dU
dz D dz D F dz F

= = ⇒ =

Thus, dimensionless equations (2), (3) (as well as 
in (1)) have a quantity 1 ,sF  characterizing presence 
of a background linear shear longitudinal flow in the 
problem.

FINITE-DIFFERENCE SOLUTION 
ALGORITHM

Finite-difference solution algorithm is based on the 
consistent time integration of the differential equation 
system (1) – (5) in each layer. Let us give an example of 
the finite-di ference analogue of equation (2) based on 
an implicit splitting scheme [7, 9]
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, ,y zt h h∆ − time and space variable pitches of a uniform 
difference grid.

Finite difference equations are solved by the sweep 
method. The numerical model was tested by comparing 
the results of calculations on a sequence of grids with 
numerical calculations of the problem of a wake behind 
self-propelled and towed bodies in a homogeneous liquid 
in a one-dimensional formulation and by comparing the 
calculation results in detail with the experimental data 
[7, 10]. Calculations of this work were carried out on a 
uniform difference grid with the following parameters. 

* 0.1,t∆ =  * * 0.02.y zh h= =  Grid area dimensions 
* *0 ,y Y≤ ≤  * *0 ,z Z≤ ≤  * * 8.Y Z= =  4-fold increase of the 

time pitch while halving ,y zh h  led to deviations in values 
of grid solutions, not exceeding 1% of the uniform norm.

RESULTS OF CALCULATION 
OF THE TURBULENT SPOT DYNAMICS 

IN THE LONGITUDINAL LINEAR SHEAR FLOW
Before presenting the results of calculations, 

following [4, 11], let us give the considerations 
concerning similarity with respect to the shear Froude 

number 0 1 ,s
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 It is well known 
[2, 3, 11] that in the absence of shear ( ) 0sU z =  at
a sufficiently long decay times, a flow generated at 
the evolution of a plane localized area of turbulent 
disturbances in homogeneous and passive stratified
fluid becomes self-similar. In this regard, the following 
representations are valid:
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where 2 2 ,r y z= +  L – is still the characteristic size 
of the turbulent spot. In accordance with the results 
of numerical experiments and analytical studies [7], 
the following representations are valid for values 
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By analogy with [4] in the case of a linear shear flow
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Flow generated at the evolution of a localized 
turbulent area in a longitudinal shear flow is illustrated 
by change in the characteristic dimensions ,y zL L , 
determined from ratios ( , ,0) ( ,0,0) 2,ye t L e t=

( ,0, ) ( ,0,0) 2.ze t L e t= . Fig. 2 (a), (b) show graphs of 
functions ( ), ( )y zL t L t  for various ( )sU z . It can be seen 
that up to values 300ct T ≤ , dimensions are the same 
for all the above shears ( )sU z  and a shear-free flo . For 
large time values the flowis characterized by more intense 
expansion of a turbulent spot, caused by generation of the 
turbulent energy in the spot due to a shear flo . Given 
considerations of similarity with respect to the shear 
Froude number sF , Fig. 2 (c), (d) shows characteristic 
“universal” curves ( )0.23 ,s y sF L t T−  ( )0.23

s z sF L t T− . A 
certain discrepancy between the results of calculations 
in the initial interval of dynamics of a turbulent spot is 
caused by a flow non-self-similarity at the initial time 
inter in shearless case occurs more later).

Flow is also characterized by behavior of 
characteristic scale of a turbulent energy ( ,0,0)e t  
depending on time and shear flow ( )sU z  (Fig. 3 (a)). 
It can be seen that up to the time 400ct T ≤ , values 

( ,0,0)e t  are practically the same (maximum deviation 
corresponds to 0.004α =  and is approximately 7%); for 
large time values the flow is characterized by generation 
of the turbulent energy due to gradients of a longitudinal 
velocity component ( , , )U t y z . The total turbulent 

energy 
0 0

( )tE t edy dz
∞ ∞

= ∫ ∫  behaves similarly (Fig. 3 (b)). 

The results of the corresponding simulation for the shear 
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Froude number sF  are shown in Fig. 3 (c), (d). A certain 
discrepancy between the results of calculations in the 

initial stage of decay is also caused by a flow non-self-
similarity in this time interval.

(a) (b)

(c) (d)

Fig. 2. Graphs of functions ( )yL t - (a);  ( )zL t - (b); ( )0.23
s y sF L t T− - (c) ; ( )0.23

s z sF L t T−  - (d) for various values ( )sU z .

(a) (b)

(c) (d)

Fig. 3. Graphs of functions ( ) ( ,0,0)me t e t= - (a); ( )tE t - (b); ( )1.54
s m sF e t T - (c); ( )1.08

s t sF E t T  - (d) for various values 

of ( )sU z .

105

Science Evolution, 2016, vol. 1, no. 2



To illustrate similarity with respect to the shear Froude 
number, Fig. 4 (a), (b), (c), (d), (e), (f) show also graphs 
of a turbulent energy, a defect density and a dispersion of 
density fluctuations along the vertical axis in the initial 
coordinates and flow area “similarity” coordinates for 

2st T = . It can be seen that with 1000sF ≥  graphs of 
functions do not differ much from each other, which 
also indicates the approximate similarity of flow at large 

sF . Appropriate hydrodynamic fields are more fully 
illustrated by contour lines (Figure 5), corresponding to 

2st T = . They were obtained for 0.001α = .
The main results are as follows. The mathematical 

model is built and numerical simulation of evolution 

of a cylindrical localized area of turbulent disturbances 
in a longitudinal horizontally homogeneous shear flow
of a passive stratified fluid is carried out. The results 
of numerical experiment show significant generation 
of turbulent energy caused by a shear flo . The latter 
may extend the turbulent spot life. The problem of flow
similarity with respect to the shear Froude number for 
sufficiently la ge values of this parameter is considered. 
Numerical experiments confirm a flow similarity at 
large values of the Froude number.

The study was supported by a grant of Leading 
Scientific Schools NSH – 7214.2016.9 and Russian 
Fundamental Research Fund (project 17–01–00332).

(a) (b)

(c) (d)

(е) (f)

s

Fig. 4. Graphs of turbulent energy functions e , a density defect ρ '2 and a dispersion of density fluctuations ρ '2 along 

the vertical axis in the initial coordinates - (a), (c), (e) and flow area in “similarity” coordinates - (b), (d), (f) for t  2.T =
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