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Abstract: The object is mathematical models and their formalization by differential equation systems. The aim is to popularize 
stochastic models and differential equation systems which solution allows an analytical form. A model formulation and a process of 
finding a solution to equation systems are of interest. In the queueing theory many models are formalized by systems of linear 
differential equations with one or more parameters in which distribution of states of queueing systems are unknown functions. In such 
systems Markov processes are often grounding in the theory of differential equations construction; in a special case postulates of 
Poisson process are used. Analytical solution of equation systems exists but it is hard to find by traditional methods. In our study we 
offer a method which allows to find an analytical solution not only for probability distribution but also for moments of any order from 
one equation system. Description of procedure of differential equation generation for moments of random order varieties is presented. 
The method is based on the usage of generating (characteristic) functions. This method is effective because it allows to find solutions 
for moments (here it is expectation and variance) without complex probability calculations. It is especially important in empirical 
researches of systems that consist of many elements. For example, when we analyze function effectiveness of operating and designed 
scaling computing systems and supercomputers. Three models and their formalization by differential equation systems that 
correspond to stochastic processes and analytical solutions of diverse complexity are formulated. Connection between stochastic 
differential equations systems and their solutions with probability distributions that are classical in probability theory is shown. 
 
Keywords: the Queuing theory, systems of stochastic differential equations, generating (characteristic) function, probability 
distribution, moments, Markov process 
 

 
 

INTRODUCTION 
Mathematical modeling takes the leading position 

in researching and analysis of complex system 
functioning. Models which appear in theory of 
stochastic processes, theory of computer science, 
theoretical physics, engineering sciences, economics, 
and ecology are often formalized by linear differential 
equations. Usually such models are formulated from 
common grounds at the first approximation and reflect 
a common trend of real process development. Many of 
them are stochastic and they are effectively described 
by queueing theory methods that are connected with 
Markov process in which functions of time 
representing probability distributions are unknown 
[1–10]. Though analytical solutions exist, they are 
found by approximate methods. Often it is connected 
with absence of necessity to search for exact solutions 
because propose tasks that have no concern with 
mathematics are solved. In recent years significant 
results in development of calculations methods were 
achieved [11–13] but they refer to improvement of 
numerical algorithms. Though analytical solutions 
exist, they are usually found by approximate methods.  

In our article we give systems of analytical 
equations of diverse complexity, solutions of which are 
found with the usage of a generating function. All 

equation systems formalize models that are formulated 
by the authors in terms of queueing theory and are 
directly relevant to the theory of computer science 
[14–17], chemistry and biotechnology [18–23]. 

The aim of the research is a construction of such 
stochastic models which are formalized by differential 
equation systems that allow analytical solution and 
have practical importance. According to the aim 
stochastic models are developed and their analytical 
solutions of diverse complexity are obtained. 
Connection between differential equation systems and 
their solutions with probability distributions that are 
classical in probability theory is shown. 

MATERIALS AND METHODS 
Markov process. In terms of queueing theory 

queueing systems described by random process of 
Markov type with denumerable number of states k 
(beginning with zero) and postulates of Poisson process 
[24–26], whose unknown functions of time are 
probability distributions )}({ tPk are considered.  

Assume a queueing system consisting of finite 
number of states, 1, 2,...,i n= . Time of system 
presence in every state is random and is described by 
exponential law of distribution. System transition from 
one state to another at a time 0tΔ →  is realized by a 
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jump. Assumption about exponential law of 
distribution of time of system presence in every state 
is equivalent to fulfillment of the conditions of 
absence of aftereffects and ordinariness, and, if the 
parameter of the exponential law is fixed, then also 
of stationarity [27, 28]. The fulfillment of the 
conditions allows to construct a system of 
differential equations of motion of a point inside a 
system defines by graduated state graph, whose 
scheme depends on the object under study [29]. Let 
us denote through ( )kP t a possibility that at the point 
of time [ )0,t∈ ∞  the system is in the state k. The 
process under consideration is formalized in the 
differential equation system which describes 
connection of possibilities that there is some number 
of units at the moment of time t, [0, )t∈ ∞  in a 
queueing system.  

Method of generating functions. The method of 
generating functions allows to reduce a system, 
consisting of arbitrary number of differential equations, 
for probability distribution of system presence in 
every state to one partial differential equation of a 
generating function with its following finding.  

Let us have { ( )}kP t  probability distribution, 

0

( ) 1k
k

P t
∞

=

=∑ , [0, )t ∈ ∞  or any other sequence of 

functions. Let us note every member ( )kP t  of this 
sequence by its multiplying by variable z to such 
degree that is equal to a sequential number of 
sequence members, then obtain the product ( )k

kz P t  
and consider the series  

0
( , ) ( )k

k
k

F z t z P t
∞

=

= ∑ .                     (1) 

Considering that | ( ) | 1kP t ≤ , the function is 
analytical in the circle | | 1z ≤ . 

Function ( )F z,t  is called generating for 
distribution { ( )}kP t . The original function ( )kP t  is 
reconstructed from the formula 

1 (0, )( )
!

k

k k

F tP t
k z

∂
= ⋅

∂
.                     (2) 

Further we will need linearityfunction and 
representation of a derived generating function [30].  

Linearity of a generating function allows to bring 
differential equation system for { ( )}kP t  to one equation 
in partial derivatives from ( )F z,t  with initial 
conditions ( 0) iF z, z=  and ( ,0) ( )iF z P t= , 

0,1, 2,...i = . 
Principle of the method. The substitution of 

probability distribution of random variables for 
generating function leads to a recurrent system of 
differential equations from its moments. At the first 
step a generating function reduces an equation system 
from probability distributions to equation of a 
generating function. At the second step we express 
moments through a generating function. The third step 

allows to write the equation for the first moment by 
differentiation of equation of generating function. 
Second differentiation allows us to write the second 
moment with regard to the first and so one. With 
increase of moment orders we increase the number of 
equations. The complexity of calculations also 
increases because the result of every element depends 
on all previous ones [15]. If we differentiate an 
equation in partial derivatives of generating function 

(0, )F t  with respect to variable z, we obtain ordinary 
differential equation for finding 1( )tμ - moment of the 
first order (of expectation). For finding ( )k tμ  that is 
the central or initial moment of the order k we 
differentiate an equation in partial derivatives k times 
and after every differentiation we obtain an ordinary 
differential equation for finding a moment whose order 
corresponds with differentiation order. After k-multiple 
differentiation we obtain a system of ordinary 
differential equations of k order that reduces to 

1 1( ) ( ) ( , ( ),..., ( ))k k k
d t a t f t t t
dt −μ + ⋅μ = μ μ , 

where a – const, ( )k tμ  is a k-order moment 
{1,2,...}k = . 
Initial conditions take the form  

1(0) mμ = , (0) 0iμ = , i m∀ ≠ , ki E∈ , m E∞∈ . 

Let us denote through ( )iM t  an expectation of 
number of requirements that exist at a time t in some 
fixed state with a condition that at a time t = 0 they 
were in this state i, 1, 2,...i = . We have  

0

( ) ( )i k
k

M t k P t
∞

=

= ⋅∑ , (0)iM i= .            (3) 

For variance ( )iD t  corresponding to expectation 
( )iM t  we obtain 

( )22

0
( ) ( ) ( ) ,i k i

k
D t k P t M t

∞

=

= ⋅ −∑  (0) 0iD = .    (4) 

Let us express ( )iM t  and ( )iD t  through generating 
function (1), differentiate it with respect to z and obtain 

1

0
( , ) ( )k

k
k

F z t k z P t
z

∞
−

=

∂
= ⋅ ⋅

∂ ∑ .                (5) 

Taking into account the expectation definition for 
random variables with denumerable number of states 
when z = 1 we obtain  

( ) (1, )iM t F t
z
∂

=
∂

.                        (6) 

Differentiating (5) with respect to z we obtain  
2

2
2

0

( , ) ( 1) ( )k
k

k

F z t k k z P t
z

∞
−

=

∂
= ⋅ − ⋅ ⋅

∂ ∑ . 

If z = 1 we obtain  
2

2
2

1 1

(1, ) ( ) ( )k k
k k

F t k P t k P t
z

∞ ∞

= =

∂
= ⋅ − ⋅

∂ ∑ ∑ .         (7) 
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0 0 1

1 1

1

( ) ( ) ( ),

( ) (( ) ) ( ) ( 1) ( ) ( 1) ( ),1 ,

( ) ( ) ( ).

k k k k

N N N

d P t N P t P t
dt
d P t N k k P t N k P t k P t k N
dt
d P t N P t P t
dt

− +

−

⎧ = − ⋅λ ⋅ + μ ⋅⎪
⎪
⎪ = − − λ + μ ⋅ + − + ⋅λ ⋅ + + ⋅μ ⋅ ≤ <⎨
⎪
⎪

= − ⋅μ ⋅ + λ ⋅⎪⎩

                                          (9) 

Noting that  
[ ]22( ) ( ) ( ) ( )iD t D t M t M t= ξ = ξ − ξ , 

with regard to (5) – (7) we obtain  
22

2

(1, ) (1, )(1, ) ( )i
F t F tF t D t

z zz
∂ ∂ ∂⎛ ⎞= + −⎜ ⎟∂ ∂∂ ⎝ ⎠

, 

final  
22

2( ) (1, ) (1, ) (1, )iD t F t F t F t
z zz

∂ ∂ ∂⎛ ⎞= + − ⎜ ⎟∂ ∂∂ ⎝ ⎠
.    (8) 

For finding ( )k tμ  of the k-order (initial or central) 
moment by differentiating k times the function ( , )F z t  
with respect to z if z = 1 we obtain a polynomial of the 
form 

1

1

( ) (1, )
ik

k i i
i

t F t
z

−

=

∂
μ = α ⋅

∂∑ , i Rα ∈ . 

RESULTS AND DISCUSSION 
Model 1 formulation. There is a queueing system 

consisting of N unites. Each of them can be in one of 
two inconsistent states. Transition of arrival from one 
state to another and back satisfies Poisson postulates 
with intensities λ and μ, accordingly. We need to find a 
probability ( )kP t  of the fact that at a time [0, )t∈ ∞  we 
obtain k arrivals in the first state. 

A model is formalized by a system  
 

with initial conditions  

(0) 1iP = , (0) 0kP = , k i∀ ≠ , 0,1,...,i N=     (10) 

and denotes a behavior of a process in a queueing 
system at any time [0, )t∈ ∞ . Let us call the system (9) 
a Bernoulli process. 

For possibilities ( )kP t  a condition of 
standardization which is a model 1 consequence is 
satisfied 

[0, )t∀ ∈ ∞ , 
0

( ) 1
N

k
k

P t
=

=∑ .                    (11) 

Formula (11) is also true for denumerable number 
of states of a queueing system, N →∞ .  

Let us solve the system (9). By differentiating 

0
( , ) ( )

N
k

k
k

F z t z P t
=

= ⋅∑  with respect to variables t and z 

we obtain  

0

( )( , ) N
k k

k

dP tF z t z
t dt=

∂
= ⋅

∂ ∑ ; 1

1

( , ) ( )
N

k
k

k

F z t k z P t
z

−

=

∂
= ⋅ ⋅

∂ ∑ , 

accordingly.  

By summing the first equation of the system (9) 
with the second multiplied by kz  and the last 
multiplied by Nz , we obtain 

 
0 1

0
1

1

( )
( ) ( )

( [( ) ] ( )

N
k k

k
N

k
k

k

dP t
z N P t P t

dt

z N k k P t

=

−

=

⋅ = − ⋅λ ⋅ + μ ⋅ +

+ ⋅ − − ⋅λ + ⋅μ ⋅ +

∑

∑
 

1 1

1
1

0 1
1

( 1) ( ) ( 1) ( ))

( ( ) ( ))

( ) ( ) ( )

k k
N

N N
N

k
k

k

N k P t k P t

z N P t P t

N P t P t N z P t

− +

−

−

=

+ − + ⋅λ ⋅ + + ⋅μ ⋅ +

+ ⋅ − ⋅μ ⋅ + λ ⋅ =

= − ⋅λ ⋅ + μ ⋅ − ⋅λ ⋅ ⋅ +∑

 

 

1 1

1 1
1 1

1 1
1 1

( ) ( )

( 1) ( ) ( )

N N
k k

k k
k k

N N
k k

k k
k k

k z P t k z P t

N z P t k z P t

− −

= =

− −

− −
= =

+λ ⋅ ⋅ − μ ⋅ ⋅ ⋅ +

+ + ⋅λ ⋅ ⋅ − λ ⋅ ⋅ ⋅ +

∑ ∑

∑ ∑
 

 

1

1
1

1

( 1) ( )

( ) ( );

N
k

k
k

N N
N N

k z P t

N z P t z P t

−

+
=

−

+μ ⋅ + ⋅ ⋅ −

− ⋅μ ⋅ ⋅ + λ ⋅ ⋅

∑  

0 1

0

( , ) ( ) ( ) ( , )

( , )( ) ( )N
N

dF z t N P t P t N F z t
dt

F z tN P t N z P t z
z

= − ⋅λ ⋅ +μ ⋅ − ⋅λ ⋅ +

∂
+ ⋅λ ⋅ + ⋅λ ⋅ ⋅ + λ ⋅ ⋅ −

∂

 

( , )( )N
N

F z tN z P t z
t

∂
−λ ⋅ ⋅ ⋅ −μ ⋅ ⋅ +

∂
 

2
1

0

( ) ( 1) ( )
N

N k
N k

k

N z P t N z P t
−

+

=

+μ ⋅ ⋅ ⋅ + + ⋅λ ⋅ ⋅ −∑  

2
1 1

0 2

1 1

( 1) ( ) ( )

( ) ( ) ( )

N N
k k

k k
k k

N N
N N

k z P t k z P t

N z P t z P t P t

−
+ −

= =

−

−λ ⋅ + ⋅ ⋅ +μ ⋅ ⋅ ⋅ −

− ⋅μ ⋅ ⋅ + λ ⋅ ⋅ = μ ⋅ −

∑ ∑  

1
1

( , ) ( , )( , )

( ) ( 1) ( , )

( 1) ( ) ( 1) ( )

N
N

N N
N N

F z t F z tN F z t z z
z t

N z P t N z F z t

N z P t N z P t+
−

∂ ∂
− ⋅λ ⋅ + λ ⋅ ⋅ −μ ⋅ ⋅ +

∂ ∂
+μ⋅ ⋅ ⋅ + + ⋅λ ⋅ ⋅ −

− + ⋅λ ⋅ ⋅ − + ⋅λ ⋅ ⋅ −

 

1 1

2 2

1 1

( , )( ) ( )

( ) ( ) ( )

N N
k k

k k
k k

N N
N N

F z tk z P t z P t
z

P t N z P t z P t

+ +

= =

−

∂
−λ ⋅ ⋅ ⋅ − λ ⋅ ⋅ + μ ⋅ −

∂

−μ ⋅ − ⋅μ ⋅ ⋅ + λ ⋅ ⋅ =

∑ ∑  

1

( , ) ( , )( , )

( 1) ( , ) ( 1) ( )N
N

F z t F z tN F z t z z
z z

N z F z t N z P t−

∂ ∂
= − ⋅λ ⋅ + λ ⋅ ⋅ −μ ⋅ ⋅ +

∂ ∂
+ + ⋅λ ⋅ ⋅ − + ⋅λ ⋅ ⋅ −

 

1 2 ( , )( 1) ( )N
N

F z tN z P t z
z

+ ∂
− + ⋅λ ⋅ ⋅ − λ ⋅ ⋅ +

∂
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1
1( 1) ( ) ( )N N

N NN z P t n z P t+
−+λ − ⋅ ⋅ + λ ⋅ ⋅ ⋅ −  

1
1

1

( , ) ( ) ( )
( , ) ( ) ( , )

N N
N N

N
N

z F z t z P t z P t
F z t z P t N F z t

z

+
−

−

−λ ⋅ ⋅ + +λ ⋅ ⋅ + λ ⋅ ⋅ +
∂

+μ ⋅ + λ ⋅ ⋅ = − ⋅λ ⋅ +
∂

 

2

( , ) ( , )

( , )( 1) ( , )

( , )( , ) ( 1) ( , )

F z t F z tz z
z z

F z tN z F z t z
z

dF z tz F z t N z F z t
dz

∂ ∂
+λ ⋅ ⋅ −μ ⋅ ⋅ +

∂ ∂
∂

+ + ⋅λ ⋅ ⋅ − λ ⋅ ⋅ −
∂

−λ ⋅ ⋅ + μ ⋅ = λ ⋅ ⋅ − ⋅ −

 

  ( , )( 1)( ) F z tz z
z

∂
− − λ +μ

∂
. 

Thus, with made assumptions, the equation system 
(9) reduces to the following equation in partial 
derivatives [31, 14]: 

( , ) ( , )( 1)( ) ( 1) ( , ).F z t F z tz z N z F z t
t z

∂ ∂
+ − λ +μ = λ −

∂ ∂
 (12) 

A general equation solution (12) can be presented 
in the form ( )v g u= , where 1( , , )u F z t c= , 

2( , , )v F z t c=  are characteristic’s equations, g is an 
arbitrary differential function. Let us solve the equation 
(12). For characteristics we have a system: 

1 ( 1)( ) ( 1)
dt dz dF

z z N z F
= =

− λ +μ ⋅λ ⋅ − ⋅
, 

where ( , )F F z t= , from which we take two equations:  

1 ( 1)( )
dt dz

z z
=

− λ +μ
, 

( 1)( ) ( 1)
dz dF

z z N z F
=

− λ +μ ⋅λ ⋅ − ⋅
. 

We find their solution by ordinary methods:  

( )
11

tz e c
z

λ+μλ +μ
⋅ =

−
, 2( ) NF z c−⋅ λ ⋅ + μ = . 

Thus,  

( )( , , )
1

tzu F z t e
z

λ+μλ +μ
= ⋅

−
, ( , , ) ( ) Nv F z t F z −= ⋅ λ ⋅ + μ . 

Then the solution of the equation (12) will take the 
form  

( )( )
1

N tzF z g e
z

− λ+μλ +μ⎛ ⎞⋅ λ ⋅ + μ = ⋅⎜ ⎟−⎝ ⎠
        (13) 

or 
( )( )

1
N tzF z g e

z
λ+μλ + μ⎛ ⎞= λ ⋅ + μ ⋅ ⋅⎜ ⎟−⎝ ⎠

. 

Taking initial conditions into consideration, 
( ,0) iF z z=  that follows from (1) if t = 1, we obtain 

( )
i N

y y g y
y y

−
⎛ ⎞ ⎛ ⎞−μ λ +μ

⋅ ⋅ =⎜ ⎟ ⎜ ⎟λ + λ +⎝ ⎠ ⎝ ⎠
 

or 
( ) ( ) ( ) ( )N i N N ig y y y y− − −= ⋅ −μ ⋅ λ + μ ⋅ + λ . 

If t is arbitrary, ( )

1
tz e

z
λ+μλ +μ

⋅
−

 is a function 

argument of g, thus, substituting y for this value, we 
obtain  

( ) ( ) ( )

( )

1 1

( )
1

N i
t t

N i
N t

z zg y e e
z z

z e
z

−
λ+μ λ+μ

−
− λ+μ

λ + μ λ +μ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅ −μ ×⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

λ +μ⎛ ⎞× λ +μ ⋅ ⋅ + λ =⎜ ⎟−⎝ ⎠

 

( ) ( )
( )

( ) ( )

( )

( ) (1 )

( ) ( ) (1 )

iN N t t

N iN t

z e z e z

z e z

− − λ+μ λ+μ

−− λ+μ

= λ + μ ⋅ ⋅ λ + μ ⋅ − μ ⋅ − ×

× λ + μ ⋅ λ + μ ⋅ + λ ⋅ −
 

Taking into consideration (13) we have  

( )( ) ( )( , ) ( ) (1 ) ( )
iN t tF z t e z e− − λ+μ − λ+μ= λ +μ ⋅ μ⋅ − + ⋅ λ +μ⋅ ×

( )( ) ( )(1 ) .
N it te z e
−− λ+μ − λ+μ× μ+λ⋅ + ⋅λ ⋅ −       (14) 

Let us introduce the following notation 

( )( )( ) 1 ,tr t e− λ+μλ
= ⋅ −
λ +μ

 

( )( )1( ) ,ts t e− λ+μ= ⋅ μ+λ ⋅
λ +μ

 

(15) 

( )( )1( ) ,tt e− λ+μϕ = ⋅ λ +μ ⋅
λ +μ

 

( )( )( ) 1 ,tt e− λ+μμ
ψ = ⋅ −

λ +μ
 

(16) 

while ( ) 1 ( )s t r t= − , ( ) 1 ( )t tψ = −ϕ . 

Then (14) with regard to (15), (16) may be written 
in the form  

( ) ( )( , ) ( ) ( ) ( ) ( )N i iF z t s t z r t t z t−= + ⋅ ⋅ ψ + ⋅ϕ .    (17) 

Let us apply the formula (2). It should be noted that 
the function ),( tzF  is a product of two functions. If  

( )( ) ( ) ( ) N iA z s t z r t −= + ⋅ , ( )( ) ( ) ( ) iB z t z t= ψ + ⋅ϕ , 

then for finding )(tPk from the formula (2) we can 
apply Leibniz formula [32] to the formula (17) 

( ) ( ) ( )

0

( ) ( ) ( ) ( ).
k k

k j j
k

j

kd A z B z A z B z
jdz

−

=

⎛ ⎞
⋅ = ⋅ ⋅⎜ ⎟

⎝ ⎠
∑  

Substituting in it corresponding differential 
functions ( )A z , ( )B z  we obtain  

0
( ) ( ) ( ) ( ) ( )

k
k j N i k j i i j

k
j

i N i
P t r t s t t t

j k j
− − − + −

=

−⎛ ⎞ ⎛ ⎞
= ⋅ ⋅ ⋅ ⋅ϕ ⋅ψ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
∑  (18) 

With regard to (15), (16), we write finally 

( ) ( )
0 ( )

N i i
t tP t e e

−
− λ+μ − λ+μ⎛ ⎞ ⎛ ⎞μ λ μ μ

= + ⋅ ⋅ − ⋅⎜ ⎟ ⎜ ⎟λ +μ λ +μ λ +μ λ +μ⎝ ⎠ ⎝ ⎠
, 

where 0k >  
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( )

0

( ) ( )

( )
jk

t
k

j

k j i j
t t

i N i
P t e

j k j

e e

− λ+μ

=

− −
− λ+μ − λ+μ

−⎛ ⎞ ⎛ ⎞ ⎡ ⎤λ μ
= ⋅ ⋅ + ⋅ ×⎜ ⎟ ⎜ ⎟ ⎢ ⎥− λ +μ λ +μ⎣ ⎦⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤λ λ μ μ
× − ⋅ × − ⋅⎢ ⎥ ⎢ ⎥λ +μ λ +μ λ +μ λ +μ⎣ ⎦ ⎣ ⎦

∑

( )
N k i j

te
− − +

− λ+μ⎡ ⎤μ λ
× + ⋅⎢ ⎥λ +μ λ +μ⎣ ⎦

. 

With zero initial conditions, at every fixed time t 
we have 

( ) ( )

( )

( )

,

k
N t

k k

N k
t

P t e

e

− λ+μ

−
− λ+μ

⎛ ⎞λ λ
= − ⋅ ×⎜ ⎟λ +μ λ +μ⎝ ⎠

⎛ ⎞μ λ
× + ⋅⎜ ⎟λ +μ λ +μ⎝ ⎠

         (19) 

 0,1, 2,..., .k N=  

In steady-state mode of operation with regard to 
equation  

0

,
k

j

i N i N
j k j k=

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⋅ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑  

irrespective to initial conditions we obtain 

lim ( )
N k

k kt

N
P P t

k→∞

⎛ ⎞ ⎛ ⎞ ⎛ ⎞μ λ
= = ⋅ ⋅ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟λ +μ μ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

=
k N kN

k

−
⎛ ⎞ ⎛ ⎞ ⎛ ⎞λ μ

⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟λ + μ λ + μ⎝ ⎠ ⎝ ⎠⎝ ⎠
.                         (20) 

Formulas (19) at every fixed time [0, )t∈ ∞  and 
(20) are known as Bernoulli distribution. 

Then from (6) with regard to (17) we obtain 
expectation: 

( ) ( )( )
( ) ( )

'

1

1

( ) (1, )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

i

N i i

z z

N i i

M t F t
z

s t z r t t z t

r t N i s t z r t t z t

−

=

− −

∂
= =
∂

= + ⋅ ⋅ ψ + ⋅ϕ =

= − + ⋅ ⋅ ψ + ⋅ϕ +

 

( ) ( )

( ) ( )

1

1

1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( ) ( )

N i i

z

N i i

t i s t z r t t z t

s t z r t t z t r t N i

− −

=

− − −

+ϕ ⋅ ⋅ + ⋅ ⋅ ψ + ⋅ϕ =

= + ⋅ ⋅ ψ + ⋅ϕ ⋅ ⋅ − ×

 

( )

( ) ( )
( )( )

1

1 1

( ) ( ) ( ) ( ( ) ( )))

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ( ) ( ))

z

N i i

t z t i t s t z r t

s t r t t t

r t N i t t i t s t r t

=

− − −

× ψ + ⋅ϕ + ⋅ϕ ⋅ + ⋅ =

= + ⋅ ψ + ϕ ×

× ⋅ − ⋅ ψ + ϕ + ⋅ϕ ⋅ + =

 

( ) ( ) ( ).r t N i i t= ⋅ − + ⋅ϕ  

Let us define in the equation (8) every summand 
separately with regard to (17): 

( ) ( )( )
( )( ( )

2 2

2 2
1

1 1

(1, ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( ) ( )

N i i

z

N i i

F t s t z r t t z t
z z

s t z r t t z t r t N i

−

=

− − −

∂ ∂
= + ⋅ ⋅ ψ + ⋅ϕ =

∂ ∂

= + ⋅ ⋅ ψ + ⋅ϕ × ⋅ − ×

 

( ) )'

1
( ) ( ) ( ) ( ( ) ( ))

z
z

t z t i t s t z r t
=

× ψ + ⋅ϕ + ⋅ϕ ⋅ + ⋅ =  

( ) ( )
( )

12( 1) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ( ) ( )) ( ) ( ( ) ( ))

iN iN i r t s t z r t t z t

r t N i t z t i t s t z r t

−− −⎡= − − ⋅ ⋅ + ⋅ ⋅ ψ + ⋅ϕ ×⎣
× ⋅ − ⋅ ψ + ⋅ϕ + ⋅ϕ ⋅ + ⋅ +

 

( ) ( )
( )

1 2( 1) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ( ) ( )) ( ) ( ( ) ( ))

N i ii t s t z r t t z t

r t N i t z t i t s t z r t

− − −+ − ⋅ϕ ⋅ + ⋅ ⋅ ψ + ⋅ϕ ×

× ⋅ − ⋅ ψ + ⋅ϕ + ⋅ϕ ⋅ + ⋅ +
 

( ) ( )

)

1 1

1

( ) ( ) ( ) ( ) ( ( ) ( )

( ) ( ( ) ( )) ( ) ( ) ( ( ) ( )) ]

N i i

z

s t z r t t z t r t t

N i t z t i r t t s t z r t

− − −

=

× + ⋅ ⋅ ψ + ⋅ϕ ⋅ ⋅ϕ ×

× − ⋅ ψ + ⋅ϕ + ⋅ ⋅ϕ ⋅ + ⋅ =
 

( )
( )
( 1) ( ) ( ) ( ) ( ) ( 1) ( )

( ) ( ) ( ) ( ( ) ( ) ( ) ( ) ( ))

N i r t r t N i i t i t

r t N i i t r t t N i i r t t

= − − ⋅ ⋅ ⋅ − + ⋅ϕ + − ⋅ϕ ×

× ⋅ − + ⋅ϕ + ⋅ϕ ⋅ − + ⋅ ⋅ϕ =
 

2

2

( ) ( 1) ( ) ( 1) ( ) ( )
( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )

N i N i r t i N i r t t
i N i r t t i i t N r t t

= − ⋅ − − ⋅ + ⋅ − − ⋅ ⋅ϕ +

+ − ⋅ − ⋅ ⋅ϕ + ⋅ − ⋅ϕ + ⋅ ⋅ϕ =
 

2 2 2

2

( ) ( 1) ( ) (
) ( ) ( ) ( 1) ( )

N i N i r t i N i i i N i
N i N r t t i i t

= − ⋅ − − ⋅ + ⋅ − − + ⋅ − −

− + + ⋅ ⋅ϕ + ⋅ − ⋅ϕ =
 

2

2

( ) ( 1) ( ) 2 ( ) ( ) ( )
( 1) ( );
N i N i r t i N i r t t

i i t
= − ⋅ − − ⋅ + ⋅ ⋅ − ⋅ ⋅ϕ +

+ ⋅ − ⋅ϕ
 

( ) ( )( )
( ) ( )

1

1 1

(1, ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( ) ( )

N i i

z

N i i

F t s t z r t t z t
z z

s t z r t t z t r t N i

−

=

− − −

∂ ∂
= + ⋅ ⋅ ψ + ⋅ϕ =

∂ ∂

= + ⋅ ⋅ ψ + ⋅ϕ ⋅ ⋅ − ×

 

( )
1

( ) ( ) ( ) ( ( ) ( ))

( ) ( ) ( );
z

t z t i t s t z r t

r t N i i t
=

× ψ + ⋅ϕ + ⋅ϕ ⋅ + ⋅ =

= ⋅ − + ⋅ϕ

 

( ) ( )( )
( )( ( )

2

2

1

1 1

(1, )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( ) ( )

N i i

z

N i i

F t
z

s t z r t t z t
z

s t z r t t z t r t N i

−

=

− − −

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

∂⎛ ⎞= + ⋅ ⋅ ψ + ⋅ϕ =⎜ ⎟∂⎝ ⎠

= + ⋅ ⋅ ψ + ⋅ϕ ⋅ ⋅ − ×

 

( ) )

( )

2

1

2 2 2

( ) ( ) ( ) ( ( ) ( ))

( ) ( ) ( ) ( ) ( )

z
t z t i t s t z r t

r t N i i t N i r t

=
× ψ + ⋅ϕ + ⋅ϕ ⋅ + ⋅ =

= ⋅ − + ⋅ϕ = − ⋅ +

 

2 22 ( ) ( ) ( ) ( ).i N i r t t i t+ ⋅ ⋅ − ⋅ ⋅ϕ + ⋅ϕ  

Let us substitute obtained expressions in the 
equation (8) 

22

2

2

2 2 2

( ) (1, ) (1, ) (1, )

( ) ( 1) ( ) 2 ( ) ( ) ( )
( 1) ( ) ( ) ( ) ( ) ( ) ( )

iD t F t F t F t
z zz

N i N i r t i N i r t t
i i t N i r t i t N i r t

∂ ∂ ∂⎛ ⎞= + − =⎜ ⎟∂ ∂∂ ⎝ ⎠
= − ⋅ − − ⋅ + ⋅ ⋅ − ⋅ ⋅ϕ +

+ ⋅ − ⋅ϕ + − ⋅ + ⋅ϕ − − ⋅ −

 

2 2

2 2 2 2

2 ( ) ( ) ( ) ( )
( ) ( 2 )
i N i r t t i t

r t N i N N i N i i Ni i
− ⋅ ⋅ − ⋅ ⋅ϕ − ⋅ϕ =

= ⋅ − ⋅ − − ⋅ + + − + − +
 

2 2 2 2

2

( ) ( ) ( ) ( ) (2 2
2 2 ) ( ) ( ) ( ) ( )

t i i i r t t i N i
i N i N i r t i t N i

+ϕ ⋅ − − + ⋅ϕ ⋅ ⋅ ⋅ − ⋅ −

− ⋅ ⋅ + ⋅ + + − ⋅ + ⋅ϕ = − − ⋅
 

Thus, the solution for (6) and (8) takes the form  

( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ) ( ) ( ),
i

i

M t N i r t i t
D t N i r t s t i t t

= − ⋅ + ⋅ϕ⎧
⎨ = − ⋅ ⋅ + ⋅ϕ ⋅ψ⎩

 

or, with regard to notation (15), (16), 
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( )

2 2 2
( ) 2( )

2 2 2

( )( ) ,                                                        

( ) ( ) ( )( ) .
( ) ( ) ( )

t
i

t t
i

N i N iM t e

N N i i N N i iD t e e

− λ+μ

− λ+μ − λ+μ

λ ⋅ μ − − λ⎧ = + ⋅⎪ λ +μ λ +μ⎪
⎨

⋅λ ⋅μ λ − +μ μ −λ λ − + μ⎪ = + ⋅ − ⋅
⎪ λ +μ λ +μ λ +μ⎩

 

In a special case if I = 0, we obtain 
( )

0 ( ) (1 ),tNM t e− λ+μ⋅λ
= ⋅ −
λ +μ

 

2
( ) 2( )

0 2 2 2

( )( )
( ) ( ) ( )

t tN N ND t e e− λ+μ − λ+μ⋅λ ⋅μ λ ⋅ ⋅ λ −μ λ ⋅
= + ⋅ − ⋅

λ + μ λ +μ λ +μ
. 

For a steady-state mode we have 

2

lim ( ) ,

lim ( ) .
( )

it

it

NM M t

ND D t

→∞

→∞

⋅λ⎧ = =⎪ λ +μ⎪
⎨ ⋅λ ⋅μ⎪ = =
⎪ λ +μ⎩

 

It is evident that at every fixed time the formulas 
(19) and (20) are probability distributions, and also 
obtained moments with zero initial conditions and in 
steady-state mode refer to enumerative characters of 
Bernoulli distribution [23]. That is why the equation 
system (9) can be considered as formalization of the 
Bernoulli process with two parameters, digital number 
of states and continuous time [29]. 

Model 1 consequence. Let us simplify the model 1. 
Assume that arrivals come from a plentiful ( N →∞ ) 
source of intensity λ and are served by intensity μ with 
the same queue discipline and Poisson postulates. Then 
considering N →∞  from the system (9) we obtain the 
equation system  

0 0 1

1 1

( ) ( ) ( ),

( ) ( ) ( ) ( 1) ( ) ( 1) ( ).k k k k

d P t P t P t
dt
d P t k P t k P t k P t
dt − +

⎧ = − ⋅λ ⋅ + μ ⋅⎪⎪
⎨
⎪ = − λ + μ ⋅ + − ⋅λ ⋅ + + ⋅μ ⋅
⎪⎩

 

Let us introduce a generating function (1), 

0
( , ) ( )k

k
k

F z t z P t
∞

=

= ∑  with initial conditions (0) 1,iP =  

(0) 0,kP =  ( 0) 1F z, = , .k i≠  
By applying it to the equation system we obtain a 

partial differential equation1 
( , ) ( , )( 1) ( 1) ( , ).F z t F z tz z F z t
t z

∂ ∂
+μ − = λ −

∂ ∂
 

By analogy with finding a solution of the partial 
differential equation (12) it is also possible to find 
solutions of this equation for probability distributions, 
expectation and variance. Let us give a differential 
equation system and solutions for expectation and 
variance 

                                                            
1 The first to find this equation and its solution was S. Palm in 1947. 
Generating functions were introduced by L. Euler in the middle of 18 
centuries when he was working with numerical series. 

With initial conditions  

(0)iM i= , (0) 0iD = . 

The solution takes the form  

( ) ,

( ) (1 ) .

t
i

t t
i

M t i e

D t e i e

−λ⋅

−λ⋅ −λ⋅

⎧ μ μ⎛ ⎞= + − ⋅⎜ ⎟⎪ λ λ⎪ ⎝ ⎠
⎨

μ⎛ ⎞⎪ = − ⋅ + ⋅⎜ ⎟⎪ λ⎝ ⎠⎩

         (21) 

All solutions are in a steady-state mode: probability 
distribution, expectation and variance are 
characteristics of Poisson distribution 

( / ) / !(exp( / )k
kp k= λ μ −λ μ , / ,M = λ μ  / ,D = λ μ  

and probability distribution and moments (21) at every 
fixed time and zero initial conditions are a Poisson 
process with two parameters formalized by the 
equation system of the consequence 1. 

Model 2. From a plentiful source a stream of 
arrivals comes on a queueing system with intensity λ. 
Arrival k in a queueing system that arrived with other 

1k −  arrivals awaits inception of service. At arbitrary 
time service of all k arrivals starts without regard to 
their number in a queueing system with general 
intensity μ. 

Let us find ( )kP t  possibility of existing k arrivals at 
a time t in a queueing system, [0, )t∈ ∞ , 0,1, 2,...k =  

The model is formalized by a differential equation 
system  

'
1

'
0 0

1

( ) ( ) ( ) ( ),   1, 2,...,

( ) ( ) ( ),

k k k

k
k

P t P t P t k

P t P t P t

−

∞

=

⎧ = − λ +μ ⋅ + λ ⋅ =
⎪
⎨

= −λ ⋅ + μ ⋅⎪
⎩

∑
 (22) 

with initial conditions  

(0) 1,iP =  (0) 0,kP =  k i≠              (23) 

and normalization condition 

0
( ) 1k

k
P t

∞

=

=∑ , [0, ).t∀ ∈ ∞  

Considering that 0
0

1 ( ) ( ),k
k

P t P t
∞

=

− =∑  the system (22) 

takes the form  

'
1

'
0 0

( ) ( ) ( ) ( ),  1, 2,...,

( ) ( ) ( )
k k kP t P t P t k

P t P t
−⎧ = − λ +μ ⋅ + λ ⋅ =⎪

⎨
= − λ +μ +μ⎪⎩

 

2 2

( ) ( ) ,

( ) ( ) ( ) 2 ( ) ( ) ( ) 2 ( ),

i i

i i i i i i i

d M t M t
dt
d D t M t M t D t M t M t M t
dt

⎧ + λ ⋅ = μ⎪⎪
⎨
⎪ ⎡ ⎤ ⎡ ⎤+ − + λ + − = μ ⋅⎣ ⎦ ⎣ ⎦⎪⎩
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( )
( ) ( ) ( )2 2 2

( ) e ,

( ) 2 / (1 e ) 2 / e e ( ) ( ).

t

t t t

M t N i N

D t N N i N t i i M t M t

−μ

−μ −μ −μ

⎧ = λ μ + μ − λ μ⎪
⎨

= λ μ − + λ − λ μ + − + −⎪⎩
 

( )
1 1

0

( )
1 1

0 0

( ) ,  ,
( ) ( )! ( )

( )   ,  .
( )!( ) ( )! ( )

k k jk
k t

k k j
j

k k j k jk k
t k j k

k k j
j j

tP t e k i
k j

tP t e t k i
k j k j

−
− λ+μ

+ +
=

− −
− λ+μ −

+ +
= =

⎧ μ ⋅λ
= −μ ⋅λ ⋅ ⋅ <⎪ λ + μ − ⋅ λ + μ⎪

⎨
⎛ ⎞μ ⋅λ λ⎪ = + ⋅ ⋅ − λ ⋅μ ⋅ ≥⎜ ⎟⎪ −λ + μ − ⋅ λ + μ⎝ ⎠⎩

∑

∑ ∑
                                         (26) 

Let us introduce a function 
0

( , ) ( ),k
k

k

F z t z P t
∞

=

= ⋅∑  

| | 1.z ≤  By multiplying an equation of k system by kz  
after adding equations to further elementary 
transformations we obtain a partial differential 
equation 

( , ) ( ) ( , ) ( (1 ) ) ( , )F z t F z t z F z t
t
∂

= − λ + μ − λ − + μ + μ
∂

. (24) 

Differentiating the equation (24) with respect to 
variable z and taking into consideration (6) and (8) we 
obtain a system of ordinary differential equations  

2 2

( ) ( ) ,

( ( ) ( ) ( )) ( ( ) ( ) ( )) 2 ( ),

d M t M t
dt
d D t M t M t D t M t M t M t
dt

⎧ +μ ⋅ = λ⎪⎪
⎨
⎪ − + +μ − + =
⎪⎩

 (25) 

whose solution takes the form of  

For the solution of the system (22) with regard to 
(23) let us use the method of finding a solution of the 
partial differential equation (12). The procedure of 
finding a solution is rather difficult. Let us show the 
final result 

 
In a steady-state case lim ( ) 0k kt

p P t
→∞

= >  from (26) 

we obtain 

0 ,
( )

p μ
=

λ +μ
 .

k

kp ⎛ ⎞μ λ
= ⋅⎜ ⎟λ +μ λ +μ⎝ ⎠

        (27) 

The formulas (26) with zero initial conditions and 
(27) are a famous geometrical distribution. Setting 

01q p= −  we obtain a famous geometrical distribution 
[25] of possibilities { 1

0
kq p− }, 1, 2,...k = . In a steady-

state mode the solution of the system (25) takes the 
form 0/M q p= , 2

0/D q p= . The equation system (22) 
can be seen as a formalization of some Markov process 
with two parameters.  

In these models we demonstrated how to find a 
solution of equation systems with the usage of 
generating functions, and in this case we found 
solutions for moments with regard not to their 
definition, but a partial differential equation for a 
generating function. It helped us to find solutions for 
moments easier. When applied, the usage of 
possibilities for calculations, except for theoretical 
studies, is unreasonable because of its fewer 
informative value and greater inconvenience. In 
practical studies it is better to use moments. The use of 

 

generating functions is also effective because it is 
possible to find moments when probability distribution 
cannot be found or is found approximately.  

Let us give as an example a model in which an 
accurate solution can be obtained only for moments. 
The difficulty also discussed in the work [29] is that an 
accurate, even a steady-state solution is connected with 
finding roots of a polynomial numerically. Moreover, a 
partial differential equation contains even two 
unknowns.  

Model 3. A Poisson stream of arrivals with 
intensity α comes on a single-server queueing system.  
Each arrival undergoes several serving stages. The time 
of a service is subordinated by Erlang distribution [33] 
of n-order with a parameter μ. When one service is 
complete the other service starts. Let us find 
expectation M ξ  of number of arrivals in a system and 
its variance .Dξ  

Model study. Let ( )kP t  be a probability of a fact 
that at a time t in a queueing system exist k arrivals, 

0,1,...k = , [0, )t∈ ∞ . A differential equation system 
takes the form [2]: 

 

0 0 1

1

'( ) ( ) ( ),
'( ) ( ) ( ) ( ) ( ),k k k n k

P t P t n P t
P t n P t P t n P t− +

= −α ⋅ + μ ⋅⎧
⎨ = − α + μ +α ⋅ + μ ⋅⎩

 (28) 

with initial conditions  

0 (0) 1,P =  (0) 0kP =                 (29) 

and normalization condition 

0
( ) 1.k

k
P t

∞

=

=∑                         (30) 

Let us introduce a generating function for solving 
the system (28) 

0
( , ) ( ).k

k
k

F z t z P t
∞

=

= ⋅∑                 (31) 

Multiplying an equation k of the system (28) by kz  
and summing we obtain  

0 0 1

1
1 0

'( ) ( ) ( )

( ) ( ).

k k k
k k k

k k k

k k
k n k

k k

z P t z P t n z P t

z P t n z P t

∞ ∞ ∞

= = =

∞ ∞

− +
= =

⋅ = −α ⋅ − μ ⋅ +

+α ⋅ + μ ⋅

∑ ∑ ∑

∑ ∑
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2
2

2 2
1

( 1) ,
2( )

( 1)( ) ( 1) 2 .
2( )

n

k

nM

n nD n k k M M
n =

+ α⎧ ζ =⎪ μ −α⎪
⎨ ⎡ ⎤α +⎛ ⎞⎪ ζ = μ −α − + α + ζ − ζ⎢ ⎥⎜ ⎟⎪ μ −α ⎝ ⎠⎢ ⎥⎣ ⎦⎩

∑
                      (36) 

After the reduction of similar terms we obtain a 
linear equation 

( )

0

( , ) ( , )

( )

nF z t n z n F z t
t

nn P t
z

∂
+ α + μ−α ⋅ − μ =

∂
μ⎛ ⎞= μ −⎜ ⎟

⎝ ⎠

.    (32) 

It is possible to find a solution of the equation (32) 
using Laplace transformation, but it will be lengthy and of 
a little use in engineering calculations, that is why it will 
be difficult to find an original. Even in a steady-state 
mode its solution given in [29] is found by numerical 
methods. Let us find an accurate solution for expectation 
and variation by the method given in [14]. Considering 
that the model is related to the class / /1nM E  [29], it is 
ergodic and a steady-state mode always exists. 

Let us introduce the following notation: 
lim ( ),k kt

p P t
→∞

=  ( ) lim ( , )
t

F z F z t
→∞

=  and, besides, 

( , )lim 0
t

F z t
t→∞

∂
=

∂
 then the formula (32) takes the form 

0
1

(1 )
( ) .

( )n

n z p
F z

z n z n+

μ −
=
α ⋅ − α + μ + μ

            (33) 

It follows from (31) that F(1) = 1 and, besides, 
because of analyticity F(z) in equation (33) a notation 

1z =  is to be a root of a numerator and denominator. 
Let us use these facts to find 0p . If z → ∞ , then we 
have an uncertainty {0/0}, and by applying l'Hospital's 
rule to (33) we obtain an equality 0n n n pμ − α = μ ⋅ . 
After division of a numerator and denominator by 
1 z− , we eliminate 0p  and obtain  

1

( )( ) n
k

k

nF z
n z

=

μ −α
=

μ−α⋅∑
.                   (34) 

Let ζ be an arbitrary notion characterizing a number 
of stages required for completion of service in a 
queueing system. Taking into consideration (6) and (8) 
in a steady-state mode 

(1),M F
z
∂

ζ =
∂

 

а 
22

2 (1) (1) (1) ,D F F F
z zz

∂ ∂ ∂⎛ ⎞ζ = + −⎜ ⎟∂ ∂∂ ⎝ ⎠
         (35) 

Let us take a derivative of a generating function in 
(34), then 

1

( )( ) .n
k

k

d d nF z
dz dz n z
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After elementary transformations 
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After calculating a second derivation we obtain 
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Taking into consideration (35) we find  

Note, that, according to formulas (36), an average 
number of stages in queueing systems has been found. 
In order to find expectation and variance of a random 
variable ξ that characterizes a number of arrivals in a 
system with regard to moment’s properties, we obtain  

2
2

4 2
1

( 1) ,
2 ( )

( 1)( ) ( 1) 2 .
2( )

n

k

nM
n

n nD n k k M M
n =

+ α⎧ ξ =⎪ μ −α⎪
⎨ ⎡ ⎤α +⎛ ⎞⎪ ξ = μ −α − + α + ξ − ξ⎢ ⎥⎜ ⎟⎪ μ −α ⎝ ⎠⎢ ⎥⎣ ⎦⎩

∑

 

If 1,n =  then we obtain famous formulas [29] 

,M α
ξ =

μ−α
 2 .

( )
D αμ
ξ =

μ −α
 

CONCLUSION 
On the example of models that describe queueing 

system processes we have analyzed solutions of 
differential systems where probability distributions are 
unknown functions. We have shown that the peculiarity 
of generating function application is the possibility to 
find not only unknown functions, but also moments. It is 
the advantage of the theory of probability and random 
processes over other mathematic theories. Solutions 
obtained in the analytical form allow to have more 
information on process researches than approximate or 
numerical methods. Model 1 shows that Poisson process 
is naturally obtained from Bernoulli process. Model 2 
shows new possibilities for geometrical distribution 
application. Model 3shows how to find an accurate 
solution of integral characteristic (moments) without 
calculations of probability distribution. 

Presented models and their solutions are of an 
interest for researches and creators of fast computing 
facilities consisting of hundreds computational nodes. 
They are also useful for researches of wireless networks. 
They are applied to logistics, economics, and analysis of 
effectiveness of different companies functioning. 
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