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Abstract: 
Livni is one of the Russian local pig breeds. We previously reported that this breed was more distinct from Duroc breed 
than from Landrace and the Large White breeds, which participated in the Livni breed creation. The aim of the study was to 
determine the SNP-based genetic signatures in fat-type Livni breed shared with commercial Landrace and the Large White 
breeds, and ones that are affected by putative selection. 
The genome-wide SNP genotyping was carried out using the Porcine GGP HD BeadChip, which contains ~ 80 000 SNPs. 
Obtained breed relationship and admixture results indicated the insignificant participation of the Landrace and the Large White 
breeds in the formation of the modern allelofund of Livni pigs. 238 candidate genes were found in the genomic regions with 
selection signatures, 182 genes with described functions were identified. In the Livni and Landrace breeds, 35 common genes 
were detected which formed one cluster with enrichment coefficient = 4.94 and predominant HOXD genes. In the Livni and 
Large White breeds, the largest amounts of common genes were detected (62 in average), which formed two clusters. Cluster 1,  
with enrichment coefficient = 2.11, was characterized with genes involved in glucose metabolism. Cluster 2, with enrichment 
coefficient = 1.60, demonstrated helicase genes. Annotated clusters were not determined for the Livni breed. However,  
50 candidate genes were specific to Livni pigs and associated with various growth, carcass and reproductive traits, essential for 
thermoregulation. 
Results revealed common SNP-based genetic signatures and breeding effects in indigenous Livni compared with Landrace and 
Large White breeds.
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INTRODUCTION
The pig is a major livestock species, and the global  

pork production primarily relies on the use of a limi- 
ted number of international commercial breeds, speci- 
fically Duroc, Large White, and Landrace [1]. Intensive  
implementation of commercial hybrid breeds charac- 
terized by high production standards led to an impo- 
verishment of genetic resources which in the past had a 
fair distribution [2]. However, recently a strong attention 
has been attracted to local breeds for improving genetic 
diversity and conservation of genetic resources. Local 
breeds are valued not only by adaptive traits, but also 
by the unique functional characteristics and intensi- 

vely studied in Asia, Europe, Africa, as well as North  
and Latin America [3–14]. 

Twenty-two local breeds were recorded in the Soviet 
Union in 1980, which were generated by crossing of 
native breeds adapted to the local climate and having 
appropriate constitution and disease resistance with 
highly-productive improved European breeds [15, 16]. 
As a result of the interbreeding of the imported breeds 
and crossing them with the native animals, many pig 
breeds were created during 1920–1990. For example, 
Ukranian White Steppe was created in Askania Nova 
and approved in 1932; North Siberian – in Novosibirsk 
and approved in 1942, Urzgum – in the Kirov region 
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and approved in 1957 – by crossing native pigs with 
the Large White boars. Breeds, as Kemerovo (approved 
in 1961), Breitov (approved in 1948), Latvian White 
and Lithuanian White (both approved in 1967), Semi- 
rechensk (1978), Mirgorod (1940), Tsivilsk (a cross of 
native Chuvash pigs with Large White boars, the breed 
is not approved), Mangalitsa, Altai (approved in 2015), 
and others were created by multiple crossbreeding 
procedures. [15]. According to the Department of Lives- 
tock and Breeding of the Ministry of Agriculture of  
the Russian Federation data, 98% of the total pig 
purebred population in 2020 included four breeds –  
Large White (66%), Landrace (15%), Yorkshire (13%) 
and Duroc (4%) [17]. Other breeds’ share was about 2%. 
Pavlova et al. consider 0.56% of the total pig population 
in the RF are of the local breeds – Livni, Altai, Tsivilsk, 
as of January 1, 2022. Four breeds make 99.46% of the  
RF pig herd, namely 56.9% Large White, 18.52% – York- 
shire, 18.18% – Landrace, and 5.83% – Duroc breed [18].  
The dramatically reduction of local pig breeds during 
last 30 years finally led to remaining only Livni, Altai 
Meat-type, Short-Eared White, and Tsivislk. The authen- 
tic Kemerovo breed has also been mentioned for a num- 
ber of years. However, according to the Yearbook on 
breeding work in pig husbandry in establishment of the 
Russian Federation for 2021, the last time a breeding 
farm certificate for the Kemerovo purebred was issued 
in 2019 [19]. It should be noted, that the certificate for 
the Tsivislk breed was last issued in 2021.

Livni is one of the Russian local pig breeds appro- 
ved in 1949. Pigs of the Livni breed are large, white, 
black-mottled, black and red. At present, only a small 
population of Livni pigs is kept in a single farm in the 
Oryol region [20]. According to the Yearbook on bree- 
ding work, in pig husbandry in establishment of the 
Russian Federation for 2021 one certificate is issued 
annually for the Livni purebred, but the total number 
of the Livni pigs is steadily declining. At the beginning 
of 2022, 547 heads were purebreds, including 348 sows  
with the share in the total livestock of 0.24% [19]. For  
comparison, in 1949 the Livni livestock was 6757 pu- 
rebreds (1334 sows), while in 1980 it was 27 200 pure- 
breds (5500 sows) [21]. It is noteworthy that at the  
age of 6 months, Livni correspond to the bacon (meat)  
type. Then the active accumulation of fat begins and 
at the age of 10 months Livni pigs are already belong  
to meat-and-fat type, and with further fattening lead  
to fat type [21]. 

We previously reported that Livni breed is charac- 
terized the highest level of genetic diversity compared 
with commercial breeds. The neighbor-joining tree sho- 
wed that this breed was the most distinct from Duroc 
breeds, but formed the knot bounding the branches cor- 
responding to the Landrace and the Large White breeds.  
This observation confirmed the participation of these 
two breeds in the Livni breed creation. The aim of 
our study was to determine the SNP-based genetic 
signatures in Livni breed common with Landrace and 
the Large White breeds, and ones that are affected by 

putative selection in the genome of Livni breed and 
could be associated with fatty tissue formation and 
breed specificity.

STUDY OBJECTS AND METHODS
Samples and genotyping. For the study, we used  

samples (ear tissue) of Livni pigs (n = 35). Only pureb- 
red animals registered in Russian swine herdbook  
were selected, the origin of which is confirmed by both 
the pedigree data and DNA analysis. For genotyping, 
we selected the most unrelated individuals. Samples of  
all breeds were sent to the Ernst Federal Research Cen- 
ter for Animal Husbandry. A parentage and breed assign- 
ment of those breeds were confirmed based on the 
microsatellites in the laboratory of the Ernst Federal 
Research Center for Animal Husbandry, which has a 
certificate of 2020–2021 ISAG Pig STR Comparison 
Test (2020–2021) and has a special license issued by the 
Russian Ministry of Agriculture. Commercial breeding 
farms and the Ernst Federal Research Center for Animal 
Husbandry collaborate based on the contracts. In the 
contract, a clause states the consent of the owners (bree- 
ding farms) to use the samples with research purpose. 

Moreover, the study did not involve any endangered 
or protected animal and all procedures were conduc- 
ted according to the ethical guidelines of the L.K. Ernst 
Federal Science Center for Animal Husbandry. The Com- 
mission on the Ethics of Animal Experiments of the  
L.K. Ernst Federal Science Center for Animal Husbandry  
approved the protocol No. 6 of May 10, 2021. The ear tis- 
sues were collected by trained personnel under strict  
veterinary rules in accordance with the rules for con- 
ducting laboratory research (tests) in the implementation 
of the veterinary control (supervision) approved by 
Council Decision Eurasian Economic Commission № 80 
(November 10, 2017).

Genomic DNA was extracted using the DNA Ext- 
ran 2 kit (ZAO Sintol, Moscow, Russia) according to the 
manufacturer’s instructions. Concentrations of dsDNA 
solutions were determined using a Qubit 1.0 fluorometer 
(Invitrogen, Life Technologies, Waltham, Massachusetts, 
USA). The OD260/280 ratio was determined using Nano- 
Drop 2000 (Thermo Fisher Scientific, Waltham, Mas- 
sachusetts, USA).

The genome-wide SNP genotyping was carried out  
using an iScan microarray scanner (Illumina Inc., Singa- 
pore) using the Porcine GGP HD BeadChip (Illumina Inc.,  
San Diego, CA, USA), which contains ~ 80 000 SNPs.  
In our study, we used all the capital equipment requi- 
red for SNP genotyping by Illumina SNP arrays. The 
equipment belongs to the Center for Collective Use 

“Bioresources and Bioengineering of Agricultural Ani- 
mals” of the Ernst Federal Research Center for Animal 
Husbandry (https://www.vij.ru/infrastruktura/ckp, acces- 
sed on 10 May 2021). The SNPs genotypes of Large 
White (n = 53) and Landrace (n = 50) breeds were 
included in the data set and obtained from Center for 
Collective Use “Bioresources and Bioengineering of  

https://www.vij.ru/infrastruktura/ckp
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Agricultural Animals” of the Ernst Federal Research 
Center for Animal Husbandry.

Quality control. Using PLINK 1.9 software, the 
SNP quality control was performed [22, 23]. All samples 
were subjected to filtering for genotyping efficiency  
(--mind 0.2). The SNPs genotyped in less than 90% of 
the samples (--geno), minor allele frequencies below  
0.01 (--maf 0.01), and p-values below 10–6 for Hardy-
Weinberg equilibrium were excluded from the analysis.  
The final data set used for analysis included 51 912 au- 
tosomal SNPs. Additional filters for linkage dise- 
quilibrium (LD) with r2 every 50kb (--indep-pairwise) 
were performed, amount of SNP passes LD-filtration 
amounted 24 861.

Genetic diversity, PCA, Neighbor-Net and Admix- 
ture. To assess the within-population genetic diversity, 
the observed (HO) and unbiased expected (UHE) hete- 
rozygosity, the rarefied allelic richness (АR), and the 
unbiased in-breeding coefficient (UFIS) were estimated 
using the R package, diveRsity [24]. Additionally, we 
computed the genomic inbreeding coefficient based on 
runs of homozygosity (ROH, FROH) as the ratio of the 
sum of the length of all ROHs per animal to the total 
autosomal SNP coverage; for ROH estimation, see 
the “Runs of Homozygosity Estimation” Section below). 
PCA was performed using PLINK v1.9 software. An R 
package, ggplot2, was used to visualize the results [25]. 
Pairwise FST values were calculated in the R package, 
diveRsity, and used for the construction of the Neighbor-
Net tree in SplitsTree software (version 4.14.5) [24, 26, 27].  
Admixture software (version 1.3.0) was employed for 
genetic admixture analysis and an R package, pophel- 
per, was used for plotting the results [28, 29]. A cross-
validation (CV) procedure was used to calculate the 
number of ancestral populations (k) from one to five 
using Admixture software (version 1.3.0).

Selection signature analysis. Three different statis- 
tics were used for detecting the signatures of selection 
in the genome of pigs: the calculation of FST values 
for each SNP when comparing pairs of breeds, the 
estimation of the ROH islands, which were overlap- 
ped among different animals within each breed, and 
hapFLK analysis. 

FST analysis. FST values for all SNPs were estimated 
for pairs of breeds using PLINK 1.9 [24]. Minor allele 
frequencies were below 5% (--maf 0.05) [30]. The top 
SNPs corresponding to 0.1% of FST values were used to 
represent a selection signature, according to Kijas et al. 
and Zhao et al. [31, 32].

Runs of homozygosity estimation. Runs of homo- 
zygosity were detected according to the window-free 
method for consecutive SNP-based detection using the 
R package, detectRUNS [33]. One SNP with a missing 
genotype and up to one possible heterozygous geno- 
type in one run were allowed to avoid the underes- 
timation of the number of ROHs that were longer  
than 8 Mb [34]. The minimum ROH length was set to 
500 kb to exclude the common ROHs. To minimize 
false-positive results, the minimum number of SNPs  

was calculated as it was proposed by Lencz et al. and 
later modified by Purfield et al. [35, 36]. 

Putative ROH islands were defined as overlapping 
homozygous regions in analyzed individuals within each 
breed. A threshold of 50% (the minimum proportion 
of animals within the breed in which overlapping ROH 
were detected) was selected, as this was suggested in 
other studies [37, 38]. We applied the threshold of 0.1 Mb  
for the minimal overlapping length size and 5 SNP for 
minimum number in ROH island. 

HapFLK analysis. In this study, a hapFLK analysis 
was performed to detect the selection signatures through 
haplotype differentiation among the studied breeds 
using hapFLK software (version 1.4.) [39]. The number 
of haplotype clusters per chromosome was calculated 
in fast-PHASE by using cross-validation and was set 
to 35 [40]. For detailed analyses, the hapFLK regions 
containing at least one SNP with a p-value threshold of  
0.01 (−log10(p) > 2) were selected.

Identification of candidate genes. For candidate 
gene mining in the genomic regions under putative 
selection, the genomic localization of the regions as 
detected by three different statistics was used, i.e., 
the FST, ROH, and hapFLK methods. Regions that 
were overlapped and revealed by at least two different 
techniques were prioritized. Borders of these regions 
according to the 10.2 genome assembly were converted 
to genome assembly 11.1. Genes located on the selected 
regions were obtained from the Ensembl Genes Release 
103 database based on the Sus scrofa gene sequence 
assembly [41].

Functional enrichment analysis. To understand the 
biological functions of the candidate genes, the Data- 
base for Annotation, Visualization, and Integrated Disco- 
very (DAVID) was used for enrichment analysis [42].  
Significant annotation clusters of enriched Kyoto Ency- 
clopedia of Genes and Genomes (KEGG) pathways and 
Gene Ontology were selected using an enrichment score 
of more than 1.3 and a p-value of < 0.05. To learn the bio- 
logical functions of annotated genes and genes not inclu- 
ded in clusters, a comprehensive literature search inclu- 
ding information from other species was carried out.

RESULTS AND DISCUSSION
Genetic diversity. The Livni pigs were characte- 

rized by higher level of genetic diversity assessed by the 
levels of observed heterozygosity, unbiased expected 
heterozygosity, and allelic richness as compared to the 
Landrace and Large White breeds. The negative value 
of the inbreeding coefficient UFIS indicates an excess of 
heterozygotes from the Hardy–Weinberg equilibrium 
in all the breeds (Table 1). In commercial breeds, the 
excess of heterozygotes was more significant compared 
to the Livni breed.

Breed relationship and admixture. The PCA-plot 
(Fig. 1a), the neighbor-joining tree (Fig. 1b) and cluster 
structure (Fig. 1c) showed the breed-specific distribution 
of individuals for all of the studied breeds. Obtained 
distribution indicated the insignificant participation of 
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the Landrace and Large White breeds in the formation 
of the modern allelofund of Livni pigs and demonstra- 
ted that sampling is suitable for searching for loci under 
selection pressure in the studied pig breeds and their 
subsequent structural annotation. 

Selection signature detection. SNPs with FST-values 
beyond the cut-off (top 0.1%) were distributed among all 
autosomes, excepting SSA18. Most of these SNPs were 
specific to breed pairs. Six SNPs were found in SSA4  
(1 SNP), SSA6 (2 SNP), and SSA11 (3 SNP), which were 
common for Livni – Landrace and Landrace – Large 
White, and seven SNPs on SSA5 (5 SNP), SSA8 (1 SNP),  
and SSA12 (1 SNP), for Livni – Large White and Land- 
race – Large White (Fig. 2). 

The distribution of ROH island number and length 
in chromosomes is presented in Table 2. Forty-two 
ROH islands were detected in the Livni breed, which 
covered 34.415 Mb of the genome, while for Landrace 
and Large White, 126 and 224 ROH islands covered 
161.792 and 282.402 Mb of the genome, respectively. 
The average length of the ROH island in Livni breed 
was significantly lower than that of pigs of commercial 

breeds: 2.868 ± 0.822 Mb versus 8.988 ± 2.185 (Land- 
race) and 15.689 ± 2.770 Mb (Large White), respecti- 
vely (p < 0.001). 

Eighteen common ROH islands were detected in the  
Large White and Landrace breeds, which were identi- 
fied in ten autosomes: SSA1 (4 ROH islands), SSA4  
(3 ROH islands), SSA5, SSA6 (3 ROH islands), SSA8, 
SSA9, SSA11, SSA13, SSA14, SSA16, and SSA17. Eight  
common ROH islands were detected in the Livni and 
Large White breeds, which were identified in six auto- 
somes, namely SSA1, SSA2, SSA7, SSA12, SSA14 
(3 ROH islands), and SSA15. Eight common ROH is- 
lands were detected in the Livni and Landrace breeds, 
which were identified in five autosomes: SSA1, SSA3 
(2 ROH islands), SSA4, SSA6, SSA11 (2 ROH islands), 
and SSA15. Five ROH islands detected in SSA1, SSA6, 
SSA11, SSA14, and SSA15 were common for three 
breeds (Table 3).  

The hapFLK analysis resulted in the identification 
of 13 putative regions affected by the selection (Fig. 3). 
These regions were distributed among 10 autosomes, in- 
cluding regions on SSA1, SSA3, SSA14, and SSA13 with  

Table 1 Summary of genetic diversity statistics calculated in studied pig breeds

Breed n* HO (M ± SE) UHE (M ± SE) UFIS [CI 95%] AR (M ± SE)
Livni 35 0.416 ± 0.001 0.411 ± 0.001 –0.011 [–0.013; –0.009] 1.998 ± 0
Landrace 50 0.373 ± 0.001 0.360 ± 0.001 –0.032 [–0.034; –0.030] 1.969 ± 0.001
Large White 53 0.351 ± 0.001 0.339 ± 0.001 –0.032 [–0.034; –0.030] 1.941 ± 0.001

* n – number of individuals; HO – observed heterozygosity; M – mean value; SE – standard error; UHE – unbiased expected heterozygosity;  
AR – rarefied allelic richness; UFIS – unbiased inbreeding coefficient [CI 95%, range variation of UFIS coefficient at a confidence interval of 95%]

0.01
Large White pig

Figure 1 Genetic relationships between Landrace, Large White and Livni pig populations: (a) Principal component analysis (PCA) 
plot showing the distribution of Landrace, Large White and Livni individuals in two-dimensional coordinate system, i.e., the first 
(PC1; X-axis) and second (PC2; Y-axis) principal components, with percentage of total genetic variability, which can be explained 
by each of the two components, being indicated within the parentheses; (b) Neighbor-Net tree constructed based on the IBS- 
distances among the studied populations; (с) Admixture plot representing cluster structure of the studied populations if the  
number of clusters K = 3

PC
2 

(8
.4

1%
)

PC1 (18.47%)

  –0.10    –0.5      0.00      0.05     0.10

0.1

0.0

–0.1

                                           a                                                                                                                      b

с

Landrace pig

                       Landrace pig                                                   Large White pig                                           Livni pig

1.0

0.8

0.6

0.4
0.2
0.0

Livni pig

0.5
alpha

Livni pig

Landrace pig
Large White pig

factor (FID)



287

Chernukha I.M. et al. Foods and Raw Materials. 2024;12(2):283–307

Figure 2 Genomic distribution of FST values estimated between the breeds: (a) Livni – Landrace; (b) Livni – Large White;  
(c) Landrace – Large White. Values for the X-axis are pig autosomes (the breadth of autosomes corresponds to their length);  
and those for the Y-axis are FST values. SNPs were plotted relative to their positions within each autosome. The threshold,  
which was estimated as the top 0.1% for FST values, is indicated by a horizontal line

Table 2 The distribution of ROH island number and length in chromosomes

SSA* Livni breed Landrace breed Large White breed
50% 70% 50% 70% 50% 70%
n# Length, Mb n Length, Mb n Length, Mb n Length, Mb n Length, Mb n Length, Mb

1 8 6.027 13 40.348 4 3.574 25 35.475 2 2.942
2 3 3.596 1 0.181 1 1.991 12 13.752 4 1.387
3 4 1.748 7 5.025 13 25.441 2 3.136
4 1 0.611 11 11.232 30 44.178 5 9.820
5 3 4.004 1 1.907 14 13.519 2 1.819
6 2 1.322 1 0.700 14 12.401 1 0.497 21 31.490 6 5.046
7 1 0.365 6 4.943 1 0.618 12 12.894 1 0.681
8 1 0.706 4 5.273 10 10.570 2 2.155
9 13 18.110 1 0.127 14 15.720 2 0.846
10 5 4.054 6 3.227 1 0.494
11 5 6.298 1 4.116 5 10.478 3 4.824 7 11.946 4 5.088
12 1 0.562 3 1.115 6 2.886
13 3 1.478 10 8.386 1 0.485 11 13.026
14 9 9.187 2 1.748 15 17.094 13 18.220 7 8.033
15 4 2.516 2 1.183 5 7.820 3 4.719 13 17.427 4 3.230
16 5 3.429 8 6.952 1 0.777
17 4 2.838 1 0.607 6 3.558 45.455
18 2 3.251 3 2.120 3.247 ± 0.762
SUM 42 34.415 7 7.928 126 161.792 16 17.358 224 282.402 43 45.455
Average 2.868 ± 0.822 1.586 ± 0.684 8.988 ± 2.185 1.929 ± 0.643 15.689 ± 2.770 3.247 ± 0.762

* SSA – Sus scrofa autosomes; # n – number of SSA
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Table 3 Common ROH islands identified in genome of two or three studied breeds 

SSA*
Livni breed Landrace breed Large White breed
SNP# Position& Mb SNP Position Mb SNP Position Mb

1 17 65.16–65.97 0.811 20 65.10–65.97 0.868
15 82.43–83.14 0.709 14 82.43–83.12 0.687

22 83.26–84.22 0.964 17 83.23–84.06 0.827
18 94.66–96.30 1.647 22 94.37–96.30 1.936
34 
(31)

216.94–222.84 
(218.18–222.84)

5.901 
(4.657)

38 
(20)

215.75–221.94 
(219.60–221.43)

6.190 
(1.833)

19 241.90 
242.96

1.052 219 
(180)

223.97–245.52 
(228.65–245.52)

21.551 
(16.864)

22 
(21)

241.90–243.21 
(241.90–243.01)

1.303 
(1.109)

24 265.78–266.65 0.873 25 265.78–266.71 0.928
2 41 

(5)
44.46–46.37 
(45.09–45.27)

1.909 
(0.181)

21 44.46–45.27 0.804

3 19 28.95–29.45 0.493 8 29.18–29.62 0.441
9 111.31–111.65 0.340 13 111.31–111.81 0.499

4 20 13.87–14.59 0.715 20 13.87–14.59 0.715
37 49.18–52.60 3.428 98 

(48)
48.13–61.32 
(48.38–53.11)

13.189 
(4.735)

20 84.63–85.69 1.065 6 85.11–85.40 0.291
10 107.67–108.28 0.611 33 107.09–108.28 1.194

5 21 67.31–67.88 0.570 45 66.43–67.68 1.251
6 24 

(18)
14.62–15.26 
(14.65–15.14)

0.635 
(0.497)

74 14.18–16.13 1.947

16 18.83–19.35 0.525 25 18.39–19.00 0.615
20 19.66–20.42 0.761 38 19.11–20.64 1.526

18 71.44–72.06 0.622 13 71.88–72.48 0.601
19 
(18)

88.24–88.94 
(88.24–88.94)

0.700 
(0.700)

13 88.24–88.62 0.373 63 
(19)

88.05–91.08 
(88.24–88.94)

3.026 
(0.700)

7 9 36.20–36.57 0.365 30 35.88 37.26 1.380
8 23 34.62 35.34 0.715 15 34.81 35.22 0.405
9 18 83.56 84.66 1.099 30 83.40 85.15 1.751
11 6 7.81–8.06 0.249 19 

(10)
7.55–8.45 
(7.55–8.06)

0.900 
(0.504)

75 
(64)

6.48–10.17 
(6.48–9.59)

3.686 
(3.112)

29 
(23)

34.82–39.79 
(35.23–39.35)

4.966 
(4.116)

45 
(23) 
(16)

34.72–40.9 
(34.72–37.40) 
(38.52–40.16)

6.246 
(2.683 
(1.637)

6 45.77–46.05 0.284 20 45.77–46.69 0.920

11 46.24–46.64 0.407
24 59.35–61.04 1.684 32 59.82–62.09 2.270

12 20 1.56–2.12 0.562 24 1.56–2.25 0.694
13 8 95.33–96.75 1.421 18 94.50–97.50 3.004
14 30 47.72–48.97 1.255 64 47.65–50.41 2.752

51 49.26–51.17 1.911

a statistical significance of p < 0.001. Four regions were 
Large White-specific, three – Landrace-specific, three –  
Large White and Landrace-specific, three – Livni and 
Large White-specific (Table 4). 

Comparing the genomic localization of the regions 
under putative selection detected by three different sta- 
tistics (FST, ROHs, and hapFLK) revealed the presence 
of 13 overlapping regions, which were identified by at  
least two different methods (Table 5); 7 regions corres- 
ponded to the Large White breed, 2 corresponded to the 
Landrace breed, 2 were common to Large White and 
Landrace breeds, and 2 were common to Large White 

and Livni breeds. Additionally, in the list of genes for 
structural and functional annotation, we included ROH 
islands identified only in Livni pigs, as well as common 
ROH islands identified in the Livni and one or two 
compared breeds. Thus, 16 Livni-specific regions, and  
39 regions, which are common for both two and more 
breeds were selected for the structural and functional 
annotation.

Candidate gene determination and functional 
enrichment determination. The structural annotation 
of these regions revealed the presence of 238 candidate 
genes: 50 genes were specific to Livni pigs, 62 to Livni 
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Continuation of Table 3

SSA*
Livni breed Landrace breed Large White breed
SNP# Position& Mb SNP Position Mb SNP Position Mb

14 40 71.65–73.67 2.023 58 
(40)

70.89–74.21 
(71.65–73.67)

3.325 
(2.023)

37 
(20) 
34 
(25) 
7

75.38–76.74 
(75.38–76.01) 
76.89–78.43 
(77.05–78.17) 
78.49–78.69

1.354 
(0.624) 
1.545 
(1.124) 
0.199

82 
(36)
(31)

75.38–78.86 
(75.45–76.74) 
(76.89–78.22)

3.474 
(1.291) 
(1.325)

7 94.10–94.94 0.846 29 93.46 95.28 1.818
6 95.18–95.40 0.226
24 98.02–99.36 1.341 24 98.02–99.36 1.341 28 

(14)
97.62–98.92 
(98.02–98.73)

1.300 
(0.707)

15 5 84.30–84.56 0.262 55 
(18)

84.37–87.85 
(84.70–85.83)

3.476 
(1.135)

19 
(5)

90.46–91.44 
(91.14–91.44)

0.983 
(0.297)

11 90.76–91.44 0.675

24 
(19)

92.81–93.87 
(92.86–93.75)

1.059 
(0.886)

33 
(26)

92.40–93.87 
(92.69–93.87)

1.469 
(1.180)

21 92.86–93.77 0.902

16 5 5.85–6.00 0.151 44 5.43–6.42 0.990
17 30 8.32–9.16 0.839 6 8.63–8.78 0.153

* SSA – Sus scrofa autosomes; # SNP – number of SNP in ROH island; & position – start and end of ROH island in accordance with genome 
assembly 10.2, information about ROH islands detected in more than 70% of animals is presented in brackets

Table 4 HapFLK regions identified in the genome of the studied breeds

SSA* Breed Position of Region Amount of SNP  
in Region

Length, Mb The Most 
Significant SNP

p-Value
Start End

1 Landrace 216 939 236 244 858 851 245 27.92 232 953 425 2.44E-06
2 Large White 143 991 472 146 088 237 78 2.10 144 881 039 2.99E-03
3 Large White 79 798 323 89 895 102 92 10.10 83 233 266 5.92E-04
4 Large White 124 675 286 124 955 662 10 0.28 124 832 207 8.14E-03
6 Landrace, Large White 18 888 120 20 189 159 38 1.30 19 601 974 5.73E-03
6 Livni, Large White 92 938 033 100 318 389 20 7.38 99 706 201 4.56E-03
10 Landrace 30 140 466 31 750 116 36 1.61 31 038 967 4.14E-03
11 Landrace, Large White 54 362 880 61 415 073 110 7.05 56 397 482 9.27E-05
13 Landrace 27 775 922 27 893 903 7 0.12 27 823 032 8.43E-03
13 Livni, Large White 64 933 643 74 382 805 122 9.45 71 775 121 1.62E-05
15 Livni, Large White 84 301 944 88 728 150 80 4.43 85 769 904 3.14E-03
15 Large White 140 660 077 141 264 578 30 0.60 140 897 463 6.65E-03
17 Landrace, Large White 6 263 548 8 746 763 71 2.48 7 572 534 1.40E-04

* SSA – Sus scrofa autosomes

Figure 3 Signatures of selection in the genomes of the studied breeds based on the hapFLK statistics. Values for the X-axis are pig 
autosomes, and those for the Y-axis are values of statistical significance (−log10 p-values). The red line indicates the threshold of 
significance at p < 0.01 (i.e., −log10(p) > 2)

Chromosome
           1             2    3      4    5   6     7      8    9  10 11 12 13      14   15 16 17 18

10

8

6

4

2

0

−l
og

10
(p

)



290

Chernukha I.M. et al. Foods and Raw Materials. 2024;12(2):283–307

and Large White pigs, 35 to Livni and Landrace pigs, 
36 to all studied breeds, and 55 were specific to Large 
White and Landrace pigs (Table 6).

Using the DAVID web tool and a list of 238 candi- 
date genes found in the genomic regions with selection 
signatures, 182 genes with described functions were 
identified. The significant clusters are shown in Table 7.  
Annotated clusters with an enrichment coefficient –
log10(p) > 1.3 (corresponds to p < 0.05) were not deter- 
mined for the Livni breed and all three studied breeds 
(Livni, Large White and Landrace). Two reliably anno- 
tated clusters were identified for the Livni and Large 
White, Large White and Landrace breeds, and one 
annotated cluster for Livni and Landrace. For the list of 
Livni and Large White genes, the presence of two anno- 
tated clusters was revealed. Cluster 1 (enrichment coef- 
ficient = 2.11) included G6PC2, HKDC1, HK1 genes 
involved in carbohydrate metabolism. Cluster 2 (enrich- 
ment coefficient = 1.60) included SUPV3L1, SLC25A16, 

HKDC1, DDX21, PIK3C2A, MAP3K7, DDX50, and  
HK1 genes involved in the processes of DNA repli- 
tion and repair. For Livni and Landrace one reliable 
cluster (enrichment coefficient = 4.49) was determi- 
ned, including the genes CIART, HORMAD1, HOXD3, 
HOXD4, HOXD8, HOXD9, HOXD10, HOXD12, HOXD13,  
EVX2, NR2E1, and PLEKHO1. Genes under selection 
pressure in commercial pig breeds (Large White and 
Landrace) were combined into two reliable clusters. 
Cluster 1 (enrichment co-efficient = 1.74) combined the 
genes KCNA1, KCNA6, KV1.5, and SLC30A9 involved in 
the regulation of ion transmembrane transport, mainly 
potassium. The IBTK, KCNA1, KCNA6, and ZBTB10 ge- 
nes regulating transcription repression and interaction 
with components of histone deacetylase co-repressor 
complexes were localized in cluster 2 (enrichment coef- 
ficient = 1.54).

Specific and overlapping sites in the genome of 
Livni, Large White and Landrace breeds that are under 

Table 5 Overlapped genomic regions and/or SNPs under putative selection identified by at least two different statistics in the Duroc 
and Livni breeds

SSA* FST
a ROHb hapFLKc

Breed Position Breed Position Breed Position
1 Landrace/Livni 9 951 603 Landrace 9.87–10.52

10 051 445
10 070 322

1 Landrace/Livni 226 429 888–226 458 237 Landrace 216.94–222.84 Landrace 216.94–244.86
230 057 074 218.18–515.22
231 262 134–231 476 049 223.97–245.52
232 259 626 228.65–245.52

1 Livni/Large White 145 137 405 Large White 143.69–145.62 Large White 143.99–146.09
144.50–144.81

3 Large White 78.28–91.19 Large White 79.80–89.90
80.19–81.59

4 Livni/Large White 31 519 009–31 637 170 Large White 30.71–33.25
5 Landrace/Large White 94 308 964–94 995 044 Large White 94.26–95.05

Livni/Large White 94 408 638–94 822 437
6 Large White 19.11–20.64 Landrace,  

Large White
18.89–20.19

Landrace 19.66–20.42
6 Large White 94.45–96.28 Large White 92.94–100.32
11 Landrace/Large White 54 595 810 Large White 54.83–57.35 Large White 54.36–61.42

54 768 013
54 829 740 56.40–56.90
55 413 895
 56 258 459–56 663 342

13 Livni/Large White 68 207 174 Large White 71.91–72.12 Livni,  
Large White

64.93–74.38
71 946 567
72 118 478

15 Livni/Large White 84 696 087 Livni 84.30–84.56 Livni,  
Large White

84.30–88.73
Large White 84.37–87.85

84.70–85.83
15 Large White 140.12–142.04 Large White 140.66–141.26
17 Large White 6.68–7.82 Landrace,  

Large White
6.26–8.75

Landrace 8.32–9.16
Large White 8.63–8.78

* SSA – Sus scrofa autosomes. Methods used for defining the signatures of selection: aFST – top 0.1% SNPs by the FST value at pairwise population 
comparison; bROH – ROH segments distributed in more than 70% of animals; and chapFLK – regions identified by hapFLK analysis at p < 0.001
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Table 6 Genes within the overlapped genomic regions affected by putative selection

SSA Region (Mb) Genesa

Livni Landrace Large White
1 4.31–4.80 PDE10A, C6orf118
1 71.81–72.72 FHL5, GPR63, NDUFAF4, KLHL32
1 87.60–87.85 U6, WISP3, TUBE1, FAM229B
1 204.60–205.65 WDHD1, SOCS4, MAPK1IP1L, LGALS3, DLGAP5, ATG14, TBPL2, 

U4, KTN1
1 299.94–300.44 U5, PBX3
2 98.53–99.63 7SK, ssc-mir-9-2, MEF2C
2 118.05–118.64 –
3 29.62–30.60* PARN, BFAR, ssc-mir-365-1, CCDC12, ERCC4
8 102.43–103.14 C4orf33, JADE1
11 42.95–43.35 –
13 36.28–36.92 MAPKAPK3, CISH_TV2, DOCK3, SNORD22, RBM15B, MANF, 

VPRBP
13 60.38–61.29* PDZRN3
14 74.80–75.20 –
14 94.10–95.53** WAPAL, OPN4, LDB3, C14H10orf116, SNCG, BMPR1A, GLUD1
14 100.10–101.35 ZNF239, ZNF32, TFAM, RPL37A
15 91.54–91.76 –
1 65.16–65.97 65.10–65.97 MAP3K7
2 44.46–46.37 44.46–45.27 MYOD1, OTOG, SNORD89, USH1C, ABCC8, KCNJ11, NUCB2, 

PIK3C2A, RPS13, SNORD14, U1, PLEKHA7, C11orf58
7 36.20–36.57 35.88–37.26 DEF6, ZNF76, FKBP5, ARMC12, CLPSL2, CLPS, LHFPL5
12 1.56–2.12 1.56–2.25 CHMP6, NPTX, RNF213
14 71.65–73.67 70.89–74.21 NRBF2, JMJD1C, ssc-mir-1296, REEP3
14 75.38–78.69** 75.38–78.86 LRRTM3, DNAJC12, SIRT1, HERC4, MYPN, ATOH7, PBLD, 

HNRNPH3, RUFY2, SLC25A16, CCAR1, STOX1, SNORA70, DDX50, 
DDX21, KIAA1279, SRGN, VPS26A, SUPV3L1, HKDC1, TACR2, HK1, 
COL13A1

14 94.10–95.40* 93.46–95.28 WAPAL, OPN4, LDB3, U3, C14H10orf116, SNCG, BMPR1A
15 84.30–84.56 84.37–87.85 NOSTRIN, SPC25, G6PC2, ABCB11
1 83.26–84.22 83.23–84.06 SEC63, GL, NR2E1, SNX3, FOXO3A
3 28.95–29.45 29.18–29.62 ABCC1, U6, SNORA70, CPPED1
3 111.31–111.65 111.31–111.81 –
4 107.67–108.28 107.09–108.28 HORMAD1, GOLPH3L, ENSA, MCL1, ADAMTSL4, ECM1, TARS2, 

RPRD2, PRPF3, CIART, PLEKHO1, VPS45
6 71.44–72.06 71.88–72.48 MINOS1, HTR6, TMCO4
11 34.82–39.79 34.72–40.96 SNORA31
11 45.77–46.64* 45.77–46.69 KLHL1
15 90.46–91.75* 90.76–91.44 EVX2, HOXD13, HOXD12, HOXD10, HOXD9, HOXD8, ssc-mir-10b, 

HOXD4, HOXD3
1 241.90–242.96 223.97–245.52 241.90–243.21 MLANA, ERMP1, RIC1, U6, SNORA19, PDL1, PLGRKT, RLN, INSL6, 

JAK2
6 88.24–88.94 88.24–88.62 88.05–91.08 PABPC4, SNORA55, U6, HEYL, NT5C1A, HPCAL4
11 7.81–8.06 7.55–8.45 6.48–10.17 HSPH1, U6, B3GALTL
14 98.02–99.36 98.02–99.36 97.62–98.92 CHAT, C10orf53, OGDHL, PARG, NCOA4, MSMB, ZFAND4, 

MARCH8, ALOX5, ZNF22, C10orf10
15 92.81–93.87 92.40–93.87 92.86–93.77 RBM45, U1, SNORD112, OSBPL6, PRKRA, DFNB59, FKBP7, 

PLEKHA3
1 82.43–83.14 82.43–83.12 SOBP
1 94.66–96.30 94.37–96.30 TPBG, IBTK, SNORD112, FAM46A
1 216.94–222.84 215.75–221.94 TEK, IFT74, LRRC19, PLAA, CAAP1, U6, TUSC1, IZUMO3, ELAVL2
1 265.78–266.65 265.78–266.71 ZCCHC7, GRHPR, POLR1E, U6, FRMPD1, TRMT10B, EXOSC3, 

DCAF10
4 13.87–14.59 13.87–14.59 FAM84B, U6, 5S_rRNA
4 49.18–52.60

60.52–61.40
48.13–61.32 OTUD6B, TMEM55A, NECAB1, CALB1, DECR1, NBN, OSGIN2, 

CU607036.1, RIPK2, 5S_rRNA, PAG1, ZNF704, ZBTB10
4 84.63–85.69 85.11–85.40 ST18, PCMTD1
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selection pressure have been identified. Positional can- 
didate genes were identified and their annotation was 
performed. In the current study, three pig breeds were 
examined and compared. We previously reported that 
Livni breed is characterized the highest level of gene- 
tic diversity compared with commercial breeds. The 
neighbor-joining tree showed that this breed was the 
most distinct from Duroc but formed the knot bounding 
the branches corresponding to the Landrace and the 
Large White breeds. This observation confirmed the par- 
ticipation of these two breeds in the formation of the 
Livni breed during it artificial selection. We observed 
the highest level of genetic diversity in Livni pigs compa- 
red to commercial breeds (Table 1), which may be a con- 
sequence of the participation of various breeds in the 
development of the Livni breed, including Large White 
and Landrace. However, results of breed relationship 
and admixture revealed distribution indicated the in- 
significant participation of the Landrace and Large 
White breeds in the formation of the modern allelofund 
of the Livni pigs.

Using three different statistics (top 0.1 FST at pair-
wise breed comparison, ROH islands and hapFLK ana- 
lysis), we selected 13 overlapping regions, which were 
identified by at least two different methods (Table 2);  
7 regions corresponded to the Large White breed, 2 cor- 
responded to the Landrace breed, 2 were common to  
Large White and Landrace breeds, and 2 were common 
to Large White and Livni breeds. Among 238 candidate 
genes, which were localized within selected genomic 
regions (Table 3), 182 genes had the described functions 
in GO-terms; among them, 50 genes were specific to 
Livni pigs, 62 were specific to Livni and Large White 
pigs, 35 were specific to Livni and Landrace pigs, 36 we- 
re specific to all studied breeds, and 55 were specific to 
Large White and Landrace pigs (Table 3). 

Among common genes for three studied breeds, 
MLANA and JAK2 were previously observed in Livni 
and Duroc breeds and involved in adipogenesis [20, 43].  
It was reported that FKBP7 is highly expressed in subcu- 
taneous adipose tissue of mature Erhualian pig, while  

CHAT is essential for macrophages as a source of ace- 
tylcholine for the regulation of adaptive thermogene- 
sis [44, 45]. HSPH1 is a known marker of both human 
and mouse brown adipocytes and was upregulated in  
young and old brown adipocytes after acute cold expo- 
sure [46]. HSPA1L were found to be differently expres- 
sed between the low and high drip loss groups in the 
Duroc pigs [47]. NCOA4 may play a role in early events 
of adipocyte differentiation and were found in Pudong 
White pigs [48, 49]. PLGRKT coordinately regulates 
multiple aspects of adipose function and was found to 
be related to obesity [50, 51]. According to Gene Onto- 
logy terms, ALOX5 is strongly associated with immunity, 
lipid metabolism and fat cell differentiation, insulin 
secretion, and oxidative stress. Interestingly, this gene  
was also very highly significantly associated with feet  
and leg structure soundness traits in pigs [52]. OSBPL6  
linked with lipid and sterol transport and encoded 
by miR-33, which may also regulate adaptive ther- 
mogenesis [53]. PLEKHA3 is also associated with lipid 
metabolism, and mutations were identified for this 
gene in the Puławska pig breed, which is characterized  
by thicker backfat and better meat quality values [54]. 
PARG is linked with carbohydrate metabolic process and 
could be involved in lipid metabolism [55]. According 
to Gene Ontology terms, ERMP1 involved incellular 
response to oxidative stress, HEYL – in skeletal muscle 
cell differentiation. INSL6 was linked with male fertility 
in Enshi pigs and reproduction in Anhui pigs [56, 57]. 
MSMB was closely related to body weight, body height, 
abdominal circumference, and chest depth in Xiangsu 
hybrid pigs [58]. OGDHL was up-regulated in the liver  
in pigs with higher backfat thickness of Songliao black 
female pig population [59]. Although PRKRA is strongly 
associated with immune response, including piglets, 
this gene plays unexpected role in the regulation of 
mitochondrial biogenesis and energetics in cells and 
brown adipocytes [60, 61]. ZFAND4 gene encodes stress 
proteins and was detected in Pudong White pigs, as well 
as ZNF22 [49, 62]. C10orf10 is involved in adipose tis- 
sue thermogenesis and was observed in heavy Iberian  

Continuation of Table 6

SSA Region (Mb) Genesa

Livni Landrace Large White
5 67.31–67.88 66.43–67.68 KV1.5, KCNA1, KCNA6
6 14.62–15.26 14.18–16.13 HP, ZFHX3
6 18.83–19.35 18.39–19.00 –
6 19.66–20.42 19.11–20.64 –
8 34.62–35.34 34.81–35.22 TMEM33, SLC30A9, BEND4, U6
9 83.56–84.66 83.40–85.15 SDHAF3
11 59.35–61.04 59.82–62.09 SLITRK1
13 95.33–96.75 94.50–97.50 7SK, ZIC1, ZIC4
14 47.72–1.17* 47.65–50.41 MN1, PITPNB, TTC28, U1
16 5.85–6.00 5.43–6.42 –
17 8.32–9.16 8.63–8.78 –

a Candidate genes. *2 closely located ROH islands, **3 closely located ROH islands
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Table 7 Functional Gene Ontology terms enriched with candidate genes

Claster Category Term P Genes
Livni and Large White

Cluster 1, enrichment 
coefficient = 2.11

KEGG_PATHWAY ssc00052: galactose metabolism 0.002 G6PC2, HKDC1, HK1
ssc00500: starch and sucrose 
metabolism

0.003

ssc04973: glucose digestion  
and absorption

0.005

ssc00010: glycolysis/gluconeogenesis 0.009
ssc04910: insulin signaling pathways 0.040

Cluster 2, enrichment 
coefficient = 1.60

UP_KW_MOLECULAR_
FUNCTION

KW-0347 ~ helicase 0.002 SUPV3L1, SLC25A16, 
DDX21, DDX50

GOTERM_MF_DIRECT GO:0003724 ~ activity of RNA 
helicase

0.009 SUPV3L1, DDX21, 
DDX50

UP_KW_LIGAND KW-0067 ~ ATP binding 0.010 SUPV3L1, SLC25A16, 
HKDC1, DDX21, 
PIK3C2A, MAP3K7, 
DDX50, HK1

KW-0547 ~ nucleotide binding 0.013

UP_SEQ_FEATURE DOMAIN: C-terminal helicase 0.025 SUPV3L1, DDX21, 
DDX50INTERPRO IPR001650: C-terminal helicase 0.029

SMART SM00490: HELICc 0.043
Livni and Landrace

Cluster 1, enrichment 
coefficient = 4.94

GOTERM_MF_DIRECT GO:0000981 ~ transcription factor 
activity of RNA polymerase II, 
sequence-specific DNA binding

0.001 HOXD13, HOXD4, 
HOXD12, HOXD3, 
EVX2, HOXD10, HOXD8

GO:0000978 ~ sequence-specific 
DNA binding of the proximal 
promoter region of RNA  
polymerase II

0.001 HOXD13, HOXD4, 
NR2E1, HOXD3, EVX2, 
HOXD10, HOXD9

GO:0001228 ~ transcription activator 
activity, sequence-specific binding of 
the transcriptional regulatory region 
of RNA polymerase II

0.002 HOXD13, HOXD4, 
NR2E1, HOXD10, 
HOXD8

GO:0005634 ~ nucleus 0.028 PLEKHO1, HOXD4, 
HORMAD1, NR2E1, 
HOXD12, HOXD3, 
EVX2, HOXD10, 
HOXD9, HOXD8, CIART

Large White and Landrace
Cluster 1, enrichment 
coefficient = 1.74

UP_KW_MOLECULAR_
FUNCTION

KW-0631 ~ potassium channel 0.003 KV1.5, KCNA1, KCNA6
KW-0851 ~ voltage-controlled ion 
channels

0.007

UP_KW_BIOLOGICAL_
PROCESS

KW-0633 ~ potassium transport 0.007

UP_SEQ_FEATURE DOMAIN: ion transport 0.007

GOTERM_MF_DIRECT GO:0005249 ~ activity of the voltage-
controlled potassium channel

0.008

GO:0008076 ~ voltage-controlled 
complex of potassium channels

0.008

GO:0034765 ~ regulation of ion 
transmembrane transport

0.025

INTERPRO IPR005821: ion transport domain 0.020

UP_KW_BIOLOGICAL_
PROCESS

KW-0406 ~ ion transport 0.030 SLC30A9, KV1.5, 
KCNA1, KCNA6

UP_KW_LIGAND KW-0630 ~ potassium 0.032 KV1.5, KCNA1, KCNA6
Cluster 2, enrichment 
coefficient = 1.54

UP_SEQ_FEATURE DOMAIN: BTB 0.005 IBTK, KCNA1, KCNA6
INTERPRO IPR000210: BTB/POZ-like 0.046 IBTK, KCNA1, ZBTB10
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Pigs [63, 64]. PDL1 was determined as candidate bio- 
markers for predicting residual feed intake in Yorkshire 
pigs, as well as U1 [65, 66]. RLN is a candidate gene for 
reproductive traits in pigs and was found to regulate adi- 
pose tissue development through stimulating adipoge- 
nesis and modulating adipocyte metabolism [67–69].  
SNORA19 could be involved in body temperature regu- 
lation [70]. U6 was associated with litter traits in York- 
shire and Landrace pigs and was a selection signature 
gene in Meishan population [71, 72]. 

In the Livni and Landrace breeds, 35 common ge- 
nes were detected, which formed one cluster with enrich- 
ment coefficient = 4.94 and predominant HOXD ge- 
nes. According to Gene Ontology terms, HOXD10 and 
HOXD9 are involved in various developmental proces- 
ses, such as single fertilization, skeletal muscle tissue 
development, adult locomotory behavior, embryonic 
skeletal system morphogenesis, peripheral nervous sys- 
tem neuron development, neuromuscular process, etc.  
HOXD10 is required systemically for secretory acti- 
vation in lactation [73]. Expression level of HOXD10 
was increased in animals with high marbling [74]. 
HOXD9 and HOXD10 are associated with such traits as 
growth, body weight and composition, abdominal fat,  
organogenesis, and feed intake and consumption [75]. 
They also play an active role in chondrogenesis and 
the development of adipose depots [76, 77]. HOXD3, 
HOXD8, HOXD12, and HOXD13 are also associated 
with skeletal system development. HOXD12 is differently  
expressed between large and small piglet size [78]. 
HOXD3 is also associated with nervous system deve- 
lopment, considered as predictors for feed efficiency  
traits [79, 80]. It was reported that HOXD4 and HOXD8  
are up-regulated in differentiated adipocytes [81]. HOXD8  
gene is involved in patterning the lower thoracic and 
lumbar vertebrae, in the urogenital tract development, 
also of mesoderm origin [82, 83]. HTR6, associated 
with nervous system, was identified as interesting can- 
didate genes involved in axonogenesis and synapsis 
in Iberian breed [84]. ADAMTSL4 was found to evolve  
under positive selection and exhibited significant down- 
regulated mRNA expression in the Tibetan pigs [85].  
ABCC1 is expressed in adipose and skeletal muscle, up-
regulated in obesity, and involved in the embryo deve- 
lopment of pig; it was also detected in Northeast wild  
boar [86–89]. HORMAD1 is linked with embryo develop- 
ment and productivity. Z. Zeng et al. noted HORMAD1  
to belong to growth-related Meishan pig genes [90].  
HORMAD1 was under heavy selection based on runs 
of homozygosity in a Large White pig population and 
associated with obesity [91]. SEC63 was determined as  
candidate genes for estimated breeding values feed con- 
version ratio in Maxgro boars [92]. It was found an asso- 
ciation between the CIART genotype and backfat thick- 
ness in Duroc pigs, and its expression is affected by 
food intake [93, 94]. According to Gene Ontology terms,  
ENSA is associated with regulation of insulin secre- 
tion and related to adipocyte development [95]. ECM1 
is involved in immunity and bone development. It was 

reported to be an important gene highly expressed in  
subcutaneous white adipose tissue (sWAT) as compared  
to brown adipocytes, and was determined in Korean 
Wild Boar, up-regulated in Congjiang Xiang pigs  
with large litter size and in testis tissue from Duroc  
boars [96–99]. KLHL1 could be linked with Landrace  
and Yorkshire pig backfat thickness in Korea and in- 
volved in environmental adaptation [100, 101]. NR2E1  
is involved in developmental processes and linked with 
environmental adaptation concerning behavioral defense 
response in Xiang pigs [102]. It showed significant as- 
sociations with feed conversion efficiency and growth 
rate in pigs [92]. PRPF3 gene is differentially expressed 
in the Longissimus dorsi muscle being more abundant 
in Large White than in Wujin pigs [103]. VPS45 could 
be linked with growth trait [104]. FOXO3A promotes 
metabolic adaptation and stress resistance in hypo- 
xia, associated with carcass length, backfat thickness  
and drip loss, related to muscle development in Iberian  
pigs [105–107]. FOXO3A could promote lipid accumula- 
tion as well [108]. Ssc-mir-10b was downregulated in  
Tibetan pigs, related to hypoxia adaptation, play impor- 
tant roles in fat-related processes in adipose tissue, had  
been frequently reported highly expressed in skeletal 
muscle during porcine prenatal and postnatal develop- 
mental stages and abundantly expressed in subcutaneous 
adipose tissue in pigs [109–113].

In the Livni and Large White breeds the largest 
amount of common genes was detected and avera- 
ged 62, which formed two clusters. Cluster 1, with enri- 
chment coefficient = 2.1, was characterized with genes 
involved in glucose metabolism. Among them, G6PC2, 
HKDC1 and HK1 are critical for glucose homeostasis.  
HK1 effects on growth and meat quality in Polish Land- 
race [114]. It is important for sperm motility in Duroc, 
enriched in brown adipocytes of aged mice, up-regula- 
ted by severe cold and essential for brown adipocytes 
thermogenesis [115–118]. Cluster 2, with enrichment co- 
efficient = 1.60, demonstrated helicase genes. DDX21 is 
associated with immunity and belongs to the top 4 lym- 
phocyte associated genes in pigs [119]. SUPV3L1 is 
important for the maintenance of the skin barrier and 
related to percentage of certain fiber types [120, 121].  
MAP3K7 is also linked with immunity and strongly as- 
sociated with neuropsychiatric processes [122]. It was  
reported to be associated with growth traits and adipo- 
cyte differentiation [100, 123]. PIK3C2A gene is related 
to hepatic insulin resistance and steatosis, average daily 
gain and lean meat percentage, intramuscular fat and 
backfat thickness in two Duroc populations, being under 
positive selection in all high-altitude species [124–127].  
According to Gene Ontology terms, ABCB11 is associa- 
ted with fatty and bile acid metabolic process and could 
be involved in gene networks for intramuscular fatty 
acid composition in porcine [128, 129]. ABCC8 was re- 
ported to be selection region for intramuscular fat and 
backfat thickness in two Duroc populations, and the 
most down-regulated genes in the group with higher 
backfat thickness in Yimeng black pigs [126, 130]. DEF6  
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is linked with average backfat thickness [131]. FKBP5 
is associated with immunity, backfat thickness and leaf  
fat weight, significantly contributed to residual feed 
intake [79, 131–133]. Expression of this gene is inver- 
sely associated with the expression of lipolytic, lipo- 
genic and adipogenic genes [134]. According to Gene 
Ontology terms, LDB3 is associated with heart develop- 
ment and muscle structure development, related to 
muscle growth traits in pig and may have potential ro- 
les in environmental adaptation [135, 136]. ARMC12 re- 
gulates spatiotemporal mitochondrial dynamics during 
spermiogenesis and is required for male fertility [137]. 
BMPR1A is associated with numerous developmental 
processes, identified as a novel candidate gene affecting 
the number of thoracic vertebrae in pigs, and regulates 
the development of hypothalamic circuits that are cri- 
tical to the feeding behavior [138, 139]. Additionally, 
BMPR1A is important in brown fat development and 
involved in browning of white adipose tissue [140, 
141]. CCAR1 positively regulates adipocyte differentia- 
tion [142]. CLPSL2 and CLPS are linked with digestion, 
lipid catabolic process, and response to food. CLPSL2 
could be involved in the regulation of acrosomal inte- 
grity, spermatozoa motility, and male fertility, while 
CLPS demonstrated effect on some characteristics con- 
nected with lean content of the carcass and fat content 
and affected intramuscular fat content [143–145]. It may  
be associated with former selection toward reduced 
fat content in carcass [114]. According to Gene Onto- 
logy terms, COL13A1 is associated with skeletal system  
development, was under significant positive selection 
Yorkshire pigs and associated with fat deposition, as 
well as HNRNPH3 [146–148]. JMJD1C is potentially 
associated with cold adaptation [149, 150]. It demonstra- 
tes the positive selection in regulation of various repro- 
ductive traits in pigs [151–154]. JMJD1C was identified 
in Tibetan pigs that are well adapted to the high alti- 
tude [155]. On the other hand, this gene have been asso- 
ciated with white blood cells in Large White pigs, 
identified as a novel regulator of adipogenesis and contri- 
buted to browning [156–158]. According to Gene Onto- 
logy terms, MYOD1 and MYPN are strongly involved 
in skeletal muscle tissue development. It was reported 
about potential role of MYOD1 in body-fat distribution 
regulation [159]. Mutations in the MYOD1 gene show 
a significant effect on the pork meat quality and single 
nucleotide polymorphisms in the porcine MYOD1 affec- 
ted on meat quality traits and carcass traits in heavy 
pigs [160–162]. MYPN is related to body composition 
and can be considered as candidate for meat and carcass  
traits in pigs [163–165]. NRBF2 is linked with energy me- 
tabolism and was specific selective for Tibetan pig [155].  
NUCB2 is expressed in fat depots of the pig and that  
level of expression is sensitive to stimulation of appetite- 
regulating pathways in the hypothalamus [166]. It plays 
an important role in whole-body energy homeostasis 
and body weight at puberty by regulation of appetite of  
Jinhua Pigs [126]. NUCB2 is also involved in cold adap- 
tation, indicating that central nesfatin-1 regulates ther- 

mogenesis [167, 168]. REEP3 mediates adipogenic diffe- 
rentiation [169]. According to Gene Ontology terms,  
SIRT1 is linked with regulation of lipid storage, white  
and brown fat cell differentiation, adipose tissue deve- 
lopment, etc. It is implied in the browning of white adi- 
pose tissue, promotes lipid metabolism and mitochond- 
rial biogenesis in adipocytes and coordinates abioge- 
nesis by targeting key enzymatic pathways [170, 171]. 
Apart from that, it negatively correlates with intramus- 
cular fat content and demonstrates protective role in 
skeletal muscle’s adaptation to cold stress [172, 173]. 
SNCG controls metabolic functions in fat cells and be- 
longs to white adipose tissue-selective genes [174, 175].  
ZNF76 is very close to peroxisome proliferative activa- 
ted receptor delta (PPARD) at 35 Mb, which is a posi- 
tional and physiological candidate for affecting backfat  
thickness [176]. RNF213 is involved in adipogenesis and  
emerged as a link between obesity, inflammation, and  
insulin resistance [177, 178]. SNORD14 were more ex- 
pressed in Large White heavy pigs with high intramus- 
cular fat content [179]. U3 was identified as a promising 
candidate gene for average backfat thickness in multiple 
pig breeds and populations [180].

Annotated clusters with an enrichment coeffici- 
ent –log10(p) > 1.3 (corresponds to p < 0.05) were not 
determined for the Livni breed. However, 50 candidate 
genes were specific to Livni pigs. DLGAP5 is a stillbirth  
associated gene involved in lipid deposition-related  
pathways and significantly associated with intramus- 
cular fat content [181–183]. ERCC4 is also associated 
with intramuscular fat content, presented in Tibetan wild 
boar and related to “response to UV” [151, 184, 185]. 
GPR63 has been identified as a receptor for intercellu- 
lar lipid messengers and associated with reproduction  
traits [186, 187]. According to Gene Ontology terms, 
LDB3 is involved in heart and muscle structure develop- 
ment, while PBX3 – in various important developmental 
processes. PDZRN3 and ATG14 could affect intra-
muscular fat content in Suhuai pigs [183, 184]. They 
are involved in adipocyte differentiation, demonstrating 
negatively influence [188, 189]. RBM15B is linked with 
average daily gain in Italian Large White pigs, while 
TBPL2 – with fertility [190, 191]. WDHD1 is associated 
with stillbirth in Large White sows and residual feed 
intake [79, 181]. According to Gene Ontology terms, 
BMPR1A is associated with immunity, bone, lung and  
heart development. BMPR1A is reported to be associated 
with obesity and important for brown adipocytes, can- 
didate gene affecting the number of thoracic vertebrae in 
a Large White × Minzhu intercross pigs [138, 192–194].  
DOCK3 is linked with fatness and growth in Huainan 
pigs [195]. LGALS3 is linked with immunity, sensitive 
to cold exposure, associated with stillbirth, and involved 
in adipogenesis [181, 196–198]. GLUD1 is an important 
gene for metabolic process, increased by cold exposure 
and essential for brown adipocytes [199, 200]. MANF 
positively regulates thermogenesis, resists obesity, as  
well as regulates hypothalamic control of food intake 
and body weight [201–203]. MAPK1IP1L and SOCS4 
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are likely candidate genes for stillborn [181, 204]. 
According to Gene Ontology terms, MEF2C is involved 
in numerous developmental processes, may be a key 
gene in insulin-induced adipocyte differentiation, invol- 
ved in fat deposition in pigs, important for foetal deve- 
lopmental, and associated with total number born and 
number born alive [205–207]. WISP3 is linked with 
sketetal and muscular development [208]. PDE10A is 
associated with chest circumference in Yorkshire Pigs, 
back fat thickness at 100 kg in Landrace pigs, and contri- 
butes to the regulation of energy homeostasis [209–211].  
PARN was identified as candidate genes associated with  
age at 100 kg in Large White pigs [212]. TFAM pro- 
motes mitochondrial DNA content, which necessary 
for increased fusion during cold adaptation [213]. Its 
amount significantly elevated after cold exposure and 
essential for thermoregulation [214, 215]. Mutation in  
the TFAM gene effects on fattening and carcass traits in 
commercial pig populations [216]. TFAM gene expres- 
sion abundance in particular tissues such as liver and 
L. dorsi revealed some strong correlations with car- 
cass and meat quality traits including marbling [217]. 
SNORD22 is associated with trimmed thigh weight in  
Italian crossbred pigs [218]. U4 and ssc-mir-9-2 were pre- 
viously determined in pigs [219, 220]. Genes associated 
with reproductive, meat and fat quality, carcass, and  
immunity traits in pigs were found in genomic regions  
affected by putative selection. Along with fatting genes,  
ones linked with thermogenesis were unexpectedly de- 
tected which oppositely should led to fat reduction.  
However, pigs could not have brown adipocytes but 
could have beige ones, which are very important for  
maintaining alternative mechanisms of thermoregulati- 
on in pigs that possibly avoid fat reduction [221–224].

CONCLUSION
The dramatic reduction of local pig breeds during 

last 30 years finally led to 0.56% of the total pig popu- 
lation in the RF, mainly Livni, Altai, and Tsivilsk breeds.  
There are several reasons for the reduction of local pig 
breeds: a trend to the reduction the total amount of  
fat on pork carcass and in meat and the aggressive im- 
plementation of the Western commercial breeds. Com- 
mercial breeds were bred without taking into account 
Russia environment, the quality and composition of  
feed and drinking water. Local pigs bred in the USSR  
are characterized by unpretentiousness to feed, stress  
and cold resistance, as well as precocity and high pro- 
ductivity. Livni is one of the Russian local pig breeds. 
Landrace and the Large White breeds participated in  

creation of the Livni breed, but obtained breed relation- 
ship and admixture results indicated the insignificant 
participation of these breeds in the formation of the 
modern allelofund of Livni pigs. The largest amount 
of common genes was detected between the Livni and  
Large White breeds. Genes involved in glucose meta- 
bolism, namely G6PC2, HKDC1, and HK1 are critical  
for glucose homeostasis, which could effect on the  
growth and meat quality traits, as well as on thermo- 
genesis. Other genes were associated with immunity, 
related to percentage of certain fiber types, growth 
traits, average daily gain and lean meat percentage, 
intramuscular fat and backfat thickness, etc. Among 
35 common genes of the Livni and Landrace breeds, 
enrichment with HOXD genes was observed. HOXD ge- 
nes are involved in various developmental processes, 
such as single fertilization, skeletal muscle tissue deve- 
lopment, adult locomotory behaviour, embryonic skele- 
tal system morphogenesis, lipid metabolism, etc., and 
are associated with traits such as growth, body weight 
and composition, fat development, organogenesis and 
feed intake, etc. Candidate genes associated with various 
growth, carcass and reproductive traits and essential 
for thermoregulation were specific to Livni pigs. Livni 
breed belongs to the meat-and-fat type, but during deve- 
lopment pigs could be also meat and fat types. The ana- 
lysis of genetic architecture confirmed the unique struc- 
ture of local breed that was bred using commercial Land- 
race and the Large White breeds. During formation 
own allelofund, the Livni breed fixed important traits, 
including flexibility during growing and feeding.
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