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Abstract:
Recently, there has been an increasing trend in the food and pharmaceutical industries towards using nanotechnological 
approaches to drug delivery and active packaging (edible coatings and films). In the food sector, nanoemulsions are the most 
promising technology for delivering active components and improving the barrier, mechanical, and biological properties of 
packaging to ensure the safety and quality of food products, as well as extend their shelf life.
For this review, we used several databases (Google Scholar, Science Direct, PubMed, Web of Science, Scopus, Research  
Gate, etc.) to collect information about nanoemulsions and their role in edible packaging. 
We searched for articles published between 2015 and 2022 and described different scientific approaches to developing active 
packaging systems based on nanoemulsions, as well as their high-energy and low-energy synthesis methods. We also reviewed 
the uses of different types of essential oil-based nanoemulsions in the packaging of food products to prolong their shelf life 
and ensure safety. Non-migratory active packaging and active-release packaging systems were also discussed, as well as their 
advantages and disadvantages. 
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INTRODUCTION
In recent years, there has been an increased interest 

in nanotechnological approaches and their applications 
in different areas, such as pharmaceuticals, medicine, 
cosmetics, rheology, polymer synthesis, drug delivery, 
and food industry. This interest is down to unique phy- 
sical, chemical, and biological properties of nano-sized 
particles (with at least one dimension of 1–100 nm) and 
a large surface-to-volume ratio [1–11]. In the food sec- 
tor, nanotechnology applications are divided into three  
key categories: 1) nano-structured foods, which contain 
nano-encapsulated or tailored nano-sized food additives 
or components; 2) smart food packaging, which uses 
nano-composite materials; and 3) materials and devices 
based on nanotechnologies, such as those used in nano-

filtration techniques for water treatment and nanosensors 
for the detection of food contaminants and food sa- 
fety [12, 13]. 

The use of nanotechnology in food applications has 
received significant interest, and nanoemulsions are one 
of the most promising techniques for encapsulating and 
transporting functional components [8, 12, 14]. More 
particularly, nanoemulsions have diverse uses in the 
food and pharmaceutical industries in delivering active 
ingredients such as drugs, micronutrients, bioactive com- 
pounds, anti-microbial agents, antioxidants, preserva- 
tives, coloring and flavoring compounds, etc. [6, 15–17]. 

According to the Compound Annual Growth Rate’s 
report (2022), the nanotechnology market is predicted 
to grow to USD 33.63 billion from 2021 to 2030, with 
applications in electronics, energy, chemicals, healthy 
food, and other sectors around the world [18]. In addi- 
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tion, the food industry demands novel technologies 
to improve shelf life of food and quality to gain higher 
consumer acceptability. Ameta et al. reported that the 
application of nanotechnology would mark a significant 
transformation in the food sectors, including production, 
processing, packaging, transportation, and consump- 
tion [19]. For example, according to previous studies, 
more than 40 000 scientists and 400 industries are using 
nanotechnology for developing food packaging [20, 21]. 

In the food sector, nanoemulsions have a variety of 
applications. In particular, they can mask unpleasant 
tastes or smells of bioactive compounds and protect 
bioactive compounds from evaporation, undesirable che- 
mical interactions with other ingredients, or migration 
in food products. Nanoemulsions are also used to con- 
trol drug delivery, extend the stability of bioactive 
compounds during processing and storage, and enhance 
the bioavailability of specific food components [22–26]. 
Most bioactive compounds, such as specific vitamins, 
antioxidants, and antimicrobial agents, are susceptible 
to chemical degradation, e.g., through oxidative reac- 
tions during food processing. Others are volatile and sen- 
sitive to food processing conditions, while certain 
bioactive compounds have low bioavailability. Due 
to their poor water solubility and high degradabi- 
lity under external conditions (pH, temperature, or light), 
these sensitive compounds are difficult to incorporate 
into food matrices. Therefore, nanoemulsions are used 
to effectively encapsulate, protect, and release bioac- 
tive compounds [27]. In addition, they lower concentra- 
tions of each ingredient added to the food systems,  
thus reducing changes in the food matrix’s sensory 
qualities [22, 28]. 

Several types of nanomaterials and nano-scaled 
components are used to develop food packaging and 
improve the shelf life of fruits, vegetables, and other 
food products. They enhance the product’s sensory 
characteristics and retard microbial growth and oxi- 
dation at all stages of production, from processing to 
packaging, transportation, storage, safety, and quality 
control [25, 29]. 

Numerous nanostructured materials, including 
nanoparticles, nanocomposites, and nanoemulsions, are 
used in food packaging to extend shelf life [8]. These 
materials deliver antioxidant, anti-browning, and anti- 
microbial agents into food packaging systems to protect 
food products [30–33]. For example, Suvorov et al.  
described packaging materials coated in a nanofilm 
with bactericidal and fungicidal characteristics based on 
silver nanoparticles [34]. 

In this study, we aimed to collect information about 
the roles of nanoemulsions in food packaging for food 
preservation and shelf life extension. We reviewed their 
properties, types, synthesis methods (high energy, low 
energy, thermal, isothermal), and their advantages in 
food packaging. We also described the process of nano- 
emulsion preparation and different types of nanoemul- 
sion-based food packaging, such as non-migratory ac- 
tive packaging and active release packaging. 

STUDY OBJECTS AND METHODS 
For this review, we used reputable search engines 

such as Google Scholar, Science Direct, PubMed, Web 
of Science, Scopus, and Research Gate. The search was 
performed using keywords “nanoemulsion”, “active 
packaging”, “shelf life”, “essential oil”, “nanomaterials”, 

“synthesis”, “food packaging”, and others. The time 
frame was 1997 to 2023, with a focus on recent 
literature (2015–2022). Types of publications included 
review articles, research papers, book chapters, and 
official reports collected from reputed journals, books, 
conference proceedings, and official websites.

RESULTS AND DISCUSSION
Nanoemulsions. Nanoemulsions are nano-sized 

emulsions synthesized to enhance the delivery of active 
ingredients to food, also known as ultrafine emul- 
sions, submicron emulsions, and mini-emulsions [35]. 
These are colloidal dispersions made up of oils, surfac- 
tants, and aqueous phases. They are isotropic, thermo- 
dynamically stable systems in which an emulsifying 
agent, such as a surfactant or a co-surfactant, combines 
two incompatible liquids into a single phase. Compared 
to thermodynamically stable microemulsions, nanoemul- 
sions are unaffected by changes in pH or other physical 
or chemical factors [25, 36]. Nanoemulsions are more  
stable to droplet aggregation and gravitational separa- 
tion than conventional emulsions, which can increase 
the shelf life of foods and beverages and mask the 
unpleasant smell of the ingredients [37]. Nanoemulsions 
typically have droplet sizes between 20 and 600 nm,  
and their transparency is due to their small size. In ge- 
neral, the size and shape of the particles dispersed  
in the continuous phase is the key difference between 
emulsions and nanoemulsions [25, 38–40]. As a result,  
nanoemulsions enhance drug delivery, improve the solu- 
bilization of poorly soluble drugs, and boost the thera- 
peutic moiety’s bioavailability. In order to synthesize a 
microemulsion, a variety of non-ionic surfactants and 
fatty acids are frequently utilized, and they have been 
approved as GRAS (generally recognized as safe) [41]. 

Nanoemulsions are classified into three categories, 
namely: 1) water-in-oil (W/O), where water is disper- 
sed in the continuous oil phase; 2) oil-in-water (O/W), 
where oil is dispersed in the continuous aqueous phase; 
and 3) bi-continuous, where micro domains of water and 
oil are inter-dispersed within the system [42]. Based on 
the amount of energy required, there are high-energy 
and low-energy emulsification methods to obtain na- 
noemulsions. Ultrasonication and high-pressure ho- 
mogenization utilizing either microfluidizers or high-
pressure homogenizers are examples of high-energy 
emulsification techniques. Low-energy emulsification 
techniques include the phase inversion temperature 
method, the solvent displacement method, and the 
phase inversion composition method [43–45]. These 
techniques have gained more interest since they are 
delicate and non-destructive, and they do not affect 
encapsulated molecules. 
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Figure 1 graphically summarizes the process of nano- 
emulsion synthesis. In the food sector, nanoemulsions 
are used to deliver nutraceuticals, antimicrobials, drugs, 
proteins, vitamins, as well as coloring and flavoring ing- 
redients into food products. In addition, nanoemulsion 
formulations of active components are used for deve- 
loping biodegradable coatings and packaging films to 
improve the quality, functional properties, nutritional 
value, and shelf life of foods [17, 36, 46]. Biodegradable 
edible films are being developed as an alternative to 
traditional packaging [47]. They can decompose into 
substances that are neutral to the environment under the 
right conditions [48]. Biodegradable packaging materials 
seem promising due to their safety and capacity to 
increase the product’s shelf life [49]. 

Properties and advantages of nanoemulsions. Food- 
grade nanoemulsions can be used in the food packaging 
systems to improve their morphological, structural, and 
biological properties by encapsulating active agents, 
i.e., essential oils, plant extracts, phenolic compo- 
unds, antimicrobials, antioxidants, anti-browning agents, 
preservatives, flavors, coloring agents, nutraceuticals, 
etc. [27, 50, 51]. Furthermore, nanoemulsions incorpo- 
rated into packaging may retard microbial growth, 
reduce color browning, and minimize lipid peroxi- 
dation, respiration rate, and water loss. This results in  
prolonged shelf life of food products such as fruits 
and vegetables [39, 52–54]. Active agents contained in  
nanoemulsions are incorporated in films and coatings 
for food packaging applications. These films and coa- 
tings comprised of biopolymer matrixes constitute the 
continuous phase because they are responsible for the 

monodispersity and stability of nanoemulsion droplets. 
The droplet coalescence is inversely proportional to 
the viscosity of the continuous phase, as the former 
decreases when the latter increases [22]. In comparison 
to other materials, biopolymer materials offer a more 
beneficial feature as a thermal packaging medium [55]. 
For example, nanoemulsions containing thyme, le- 
mongrass, and sage essential oils were incorporated in a 
film comprised of sodium alginate [56]. A nanoemulsion 
containing antimicrobial self-microemulsifying thyme 
essential oil was used to develop a biopolymer film 
based on calcium alginate [57]. A chitosan-based film 
developed by incorporating a nanoemulsion with 
thyme oil was used as a food packaging material. This 
film improved packaging properties, retarded the 
growth of food-borne pathogens, and increased the 
shelf life of food [58]. Cinnamon and clove essential 
oils were used to increase the antioxidant and 
antifungal activities, as well as oxidative stability of 
nanocapsules containing Citrus reticulate essential 
oil [59]. An active nanocomposite packaging film was 
developed by nano-encapsulating the Cinnamodend- 
ron dinisii Schwanke essential oil, utilizing zein  
as a wall material and a chitosan matrix [60]. A  
gelatin-chitosanbased film was developed by incorpora- 
ting nanoemulsions loaded with active agents: 1) canola 
oil; 2) α-tocopherol/cinnamaldehyde; 3) α-tocopherol/
garlic oil; or 4) α-tocopherol/cinnamaldehyde and garlic  
oil [61].  

Synthesis of nanoemulsions. Since nanoemulsions 
are thermodynamically unstable systems, energy is 
required to develop them. Depending on the amount of 
energy required, nanoemulsions can be developed by 

Figure 1 Preparation of nanoemulsions for food packaging applications
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high-energy or low-energy emulsification methods, as 
well as by some of the current techniques such as the 
bubble-bursting method [43, 62–64]. High-energy emul- 
sification methods include ultrasonication and high- 
pressure homogenization, while low-energy emulsificat- 
ion methods include phase inversion temperature, sol- 
vent displacement, and phase inversion composition [35, 
44, 65–66].

High-energy emulsification methods. High mecha- 
nical energy is used to generate strong disruptive forces 
that split up large droplets into nano-sized droplets and 
create nanoemulsions with high kinetic energy. High-

energy methods rely on mechanical equipment to pro- 
duce disruptive forces that generate high energies 
resulting in small oil droplets. They include high-
shear stirring, ultrasonic emulsification, high-pressure 
homogenization, and, in particular, microfluidics and 
membrane emulsification [66–68]. The interior phase 
droplet size frequently exceeds the nanometer range 
when nanoemulsions are made using these methods. 
This is because dispersion requires a lot of energy, 
and there is an insufficient surfactant to completely 
adsorb all the droplets created during dispersion on the 
interface. Coalescence, which increases the average 

Table 1 Applications and functions of nanoemulsion-based packaging

Type of 
packaging 
(carrier)

Essential oil 
(EO)

Composition Emulsifier Method of film 
formation

Key findings Application References

Film Cinnamon  
and rutin

Chitosan/Gelatin 
polymer matrix

Tween 80 Solution casting 
method

Excellent 
antimicrobial and 
antioxidant activity 
and improved 
thermal and UV-
blocking properties

Active food 
packaging

[99]

Coating Oregano EO  
and Resveratrol 
EO

Pectin Biopolymer Tween 80 Homogenization Prolonged shelf-
life and retarded 
physiochemical 
changes. Improved 
preservative 
function and 
stability of coating

Pork loin [100]

Film Thymus  
Daenensis EO

Hydroxypropylmethyl 
cellulose

Tween 
80 and 
Lecithin

Sonication Enhanced 
antimicrobial 
activity

– [101]

Coating Cardamom Carboxymethyl 
cellulose

Tween 80 Ultrasonication Enhanced 
antibacterial 
and antibiofilm 
activity against 
Escherichia coli 
and Listeria 
monocytogens. 
Increased the 
quality and shelf-
life

Tomato [102]

Film Thyme oil Calcium alginate  
and propylene glycol

Tween 80 Sonication Excellent 
antimicrobial 
activity. Increased 
water-vapor 
permeability, 
opacity, and 
thickness

Ground 
beef

[57]

Film Tea-Tree oil +  
TiO2 
nanoparticles

Sodium alginate – – Enhanced the 
retention property. 
Improved the 
barrier and 
UV blocking 
properties of the 
film. Improved 
the quality 
and reduced 
Anthracnose in 
stored banana

Banana [84]
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droplet size, takes place in this case [35]. Particle 
size, stability, rheology, and color of the emulsion can  
be controlled more precisely using these methods with  
a variety of formulation components. High-energy 
nanoemulsion formulation techniques for food ingre- 
dients have the benefit of lowering the risk of spoilage 
and inactivation of food components without affec- 
ting food safety, nutritional value, or sensory attribu- 
tes [67]. High-energy methods can be used to create na- 
noemulsions from any type of oil. However, they are 
most commonly used for oils with a high molecular 
weight and high viscosity. This allows for easier sur- 
factant selection and generally requires a smaller amount 
of the surfactant. However, these methods seem to be 
inconvenient for drug delivery systems due to heat-
sensitive ingredients [69]. 

High-speed stirring. High-speed stirring was found 
to be a very efficient technique for producing nano- 
emulsions. The method is rapid, economical, and sui- 
table for mass production. Scholz & Keck created 
nanoemulsions with droplet sizes of 135 nm and narrow 
size distributions using this method [70]. The emulsions 
were physically stable for at least three months. This 
method produces an emulsion with slightly larger drop- 
let sizes than high-pressure homogenization. Macro-
emulsions are usually created by high-speed stirring 
with rotor-stator homogenizers. According to earlier 

research, rotor-stator systems might create emulsions 
with mean droplet sizes in the lower micrometer  
range [71, 72]. 

Ultrasonication. Nanoemulsions preparation by ultra- 
sonic emulsification is a useful technique for small test 
samples since it reduces the mean droplet diameter size. 
Ultrasonication converts electrical waves into pressure 
waves with a reduced droplet size and increased sonica- 
tion time, power, and emulsifier concentration [69]. 
Since this method produces more heat, it is inappro- 
priate for heat-sensitive food components. The primary 
method of treatment with ultrasound is cavitation, and 
in liquid foods ultrasonic waves speed up chemical 
reactions, diffusion, and dissolving processes. Free ions 
produced by ultrasonic cavitation cause the ultrasonic 
acceleration of chemical reactions [73]. This method 
produces high droplet distributions with a particle size 
range of 150–700 nm, depending on the pre-emulsion 
preparation method [74]. Two mechanisms are thought 
to be involved in ultrasonic emulsification. First, when 
an acoustic field is applied, interfacial waves are created, 
and these waves eventually become unstable, causing 
the oil phase to erupt into the aqueous medium as 
droplets. Second, the use of low-frequency ultrasound 
induces acoustic cavitation, leading to the production 
and subsequent dissolution of micro bubbles caused 
by changes in sound wave pressure. Extreme levels 

Continuation of Table  1

Type of 
packaging 
(carrier)

Essential oil 
(EO)

Composition Emulsifier Method of film 
formation

Key findings Application References

Coating Ginger EO Sodium casinate Tween 80 Ultrasonication Increased the shelf-
life of chicken 
breast. Strong anti-
microbial activity

Chicken 
breast

[86]

Film Ginger EO +  
Montmorillonite  
(MMT)

Gelatin Tween 
20, Span 
80 and 
Canola 
oil

Microfluidization Improved 
antioxidant 
activity. Improved 
mechanical 
properties.

– [103]

Film Curcumin Banana starch  
and glycerol

Tween 80 Emulsion phase 
inversion 

Reduced the 
film’s water vapor 
permeability 
and increased 
elongation at break

Aqueous 
and non-
aqueous 
food 
stimulates

[104]

Film Copaiba oil Pectin Tween 80 Ultrasonication Reduced tensile 
strength, increased 
elongation at break 
and anti-microbial 
activity against 
Staphylococcus 
aureus and E. coli

– [96]

Packaging 
(O2 ab-
sorber)

Cumin EO +  
Sunflower oil  
nanoemulsion

Oxygen absorber – Homogenization Delayed the 
growth of 
Mesophilic and 
Psychrotrophic 
bacteria and 
enhanced shelf-life.

Lamb loin [90]
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of intensely localized turbulence are produced by 
each bubble collapse. The primary oil droplets of the 
dispersed oil are effectively broken up into droplets of a 
sub-micron size by turbulent micro-implosions [75, 76]. 

High-pressure homogenization. High-pressure homo- 
genization is one of the high-energy mechanical pro- 
cessing techniques for the formation of oil-in-water 
nanoemulsions. It is especially well suited for the conti- 
nuous synthesis of finely dispersed emulsions [77]. 
When compared to the nanoemulsions synthesized by 
spontaneous emulsification, the nanoemulsions formed 
by high-pressure homogenization demonstrated a redu- 
ced droplet size and enhanced in vitro release [78, 79]. 
 This method has the advantages of rapid emulsification, 
a small particle size, homogeneous distribution, a stable 
system, and a low surfactant amount [72]. 

Low-energy emulsification methods. Low-energy 
emulsification methods use the intrinsic chemical energy 
(or chemical potential of its constituents) of a system 
for the synthesis of nanoemulsions. These methods use 
slow stirring (1600 rpm), which leads to lower energy 
consumption. Low-energy emulsification methods are 
categorized into two types: isothermal and thermal. 
For bioactive substances, which are thermally sensitive, 
isothermal techniques are more appropriate [64, 69]. 
They include phase inversion temperature, solvent 
displacement, phase inversion composition, spontane- 
ous emulsification, micro-emulsion dilution, and more 
recently developed techniques such as D-phase emul- 
sification [43, 44, 69]. 

Isothermal methods. Low-energy isothermal pro- 
cesses do not require temperature change or a speci- 
fic homogenizer to develop small droplets. Isothermal 
methods have numerous benefits. They are used to pre- 
pare nanoemulsions over a wide temperature range, 
without the need for temperature quenching after pre- 
paration, which may result in significant energy savings. 
Also, they allow for the encapsulation of heat-sensitive 
compounds [80]. 

Spontaneous emulsification. Numerous physicoche- 
mical processes can lead to this method: real sponta- 
neous emulsification occurs when two immiscible li- 
quids come into contact and emulsify on their own 
without the use of heat or mechanical forces. When 
surfactants are present or absent, solvents might be used 
to speed up the process [80].

Emulsion phase inversion. In emulsion phase inver- 
sion, an aqueous phase is added to a stirring organic 
phase. Since this method also involves mixing water 
with oil, it is sometimes referred to as “catastrophic 
phase inversion”. The emulsion phase inversion method 
is quite similar to the later steps of spontaneous emul- 
sification, which include breaking down a microemul- 
sion into tiny oil droplets. This process is also known as 

“phase inversion composition” [80].
Thermal methods. Phase inversion. Phase inversion 

makes use of the chemical energy liberated by phase 
changes that occur during emulsification. Transitions 
from structures with a surfactant film with an average 

zero curvature play a key role in the formation of 
nanoemulsions, even though these phase transitions 
frequently require the inversion of the surfactant film 
curvature from positive to negative or vice versa. There 
are two methods for inducing phase transitions: phase 
inversion temperature and phase inversion composition. 
The former induces phase transition by changes in tem- 
perature, while the latter induces phase transition by 
changes in composition [38]. 

Nanoemulsion-based food packaging materials. 
The four primary functions of packaging are restraint, 
convenience, communication, and protection. Among 
all, protection is the key function since packaging pro- 
tects food from compressive pressures, vibration, shock, 
dust, microbial contamination, undesirable odors, ga- 
ses, water vapor, and moisture [54]. The growth of food- 
borne pathogens is among the most common causes of 
a limited shelf life. Motivated by increased consumer 
interest in longer shelf life and easy food handling, 
researchers are developing improved food packaging 
such as active or intelligent packaging. The term “active 
packaging” refers to a system in which the packaging 
has been modified to preserve, protect, or enhance  
the food’s sensory attributes, safety, and quality [81, 82]. 
Active packaging has become a popular way to extend 
the shelf life of food products, reduce product losses, 
and guarantee customer safety. 

Active packaging can be divided into two types: 
non-migratory active packaging and active-release 
packaging. Non-migratory packaging mainly refers 
to scavengers or absorbers such as oxygen scavengers, 
moisture scavengers, and ethylene absorbers. In cont- 
rast, active-release packaging systems include carbon  
dioxide emitters, antimicrobial packaging, and anti- 
oxidant packaging. The use of nanoemulsions is a re- 
cent technique for providing food packaging materials 
with antimicrobial, antioxidant, anticancer, antiin-flam- 
matory, and antiviral activities, as well as UV blocking, 
water vapor, and oxygen barrier properties [83–87]. 

Nanoemulsions can be integrated or incorporated 
into films and coatings in order to potentially be used 
in food packaging. Nanoemulsions containing bioactive 
compounds can be used to develop biodegradable films 
and coatings to enhance the quality, functionality, shelf 
life, and nutritional content. Biopolymer matrix-based 
films and coatings comprise the continuous phase be- 
cause they provide mono dispersity and stability to 
nanoemulsions droplets [36]. 

Nanoemulsions in non-migratory active packaging. 
Non-migratory active packaging refers primarily to 
absorbers and scavengers that are meant to eliminate or 
absorb undesirable gaseous elements from atmosphere 
inside the food package without intentional migra- 
tion. Also, they provide a regulated influx of desired 
compounds into the packing environment, which 
favorably affects the food product by extending its 
shelf life. Active ingredients are incorporated into gas-
absorbent packaging materials that can react with or 
absorb inside gases. Of all gas scavenging technologies, 
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the oxygen-scavenging packaging system has been 
the subject of most research and application [81]. This 
system extends the shelf life of foods while preserving 
their nutritional value and preventing discoloration, 
rancidity, oxidative browning, microbiological spoilage, 
and organoleptic deterioration, thus ensuring food  
safety [88]. 

Curcumin nanoemulsions were developed by 
high-pressure homogenization with varied surfactant 
(Tween 20) concentrations, and they were subsequently 
incorporated into the commercial milk system. Cur- 
cumin nanoemulsions exhibited efficient oxygen 
scavenging activity. Milk fortified with curcumin nano- 
emulsions showed considerably less lipid oxidation in 
comparison to unfortified milk, so these nanoemulsions 
are suitable for the beverage industry [89]. 

Hasani-Javanmardi et al. developed an oxygen ab- 
sorber packaging incorporated with a nanoemulsion 
containing cumin and safflower essential oils and stu- 
died its effect on the quality of lamb loins throughout 
a 20-day chilled storage period [90]. The treatments 
were performed in three stages: single, binary, and 
ternary. They delayed the growth of mesophilic and 
psychrotrophic bacteria, Enterobacteriaceae, and lactic 
acid bacteria. Also, they retarded the physicochemical 
and sensory changes, but increased the rate of 
metmyoglobin production, total volatile nitrogen, lipid 
and protein oxidation, as well as sensory and color 
degradation. In another study, a food-grade vitamin 
E acetate nanoemulsion was developed using edible 
mustard oil and Tween 80. The nanoemulsion exhibited 
high bioactivity, as well as antioxidant and antibacterial 
effect, indicating that it may be used to extend the shelf 
life of fruit juice. The presence of vitamin E acetate was 
thought to account for antioxidant activity. As a result, 
it could scavenge reactive oxygen species produced in 
the body when lipids were oxidized, which could harm  
cells [91]. 

Palladium nanoparticles were developed with multi-
layered poly (3-hydroxybutyrate) and polycaprolactone 
polymers, very effective oxygen scavengers, by using 
the electrospinning method. The resulting nanocompo- 
sites offered high oxygen-scavenging activity [92]. Ethy- 
lene scavengers are also needed in order to prolong 
the shelf life of fruits and vegetables. Ethylene is a 
well-known plant growth hormone that stimulates 
fruit ripening but can also cause over-ripening and 
even deterioration, giving fruits a restricted shelf life. 
Therefore, to reduce fruit waste, an ethylene scavenger 
can be created that is highly effective, safe, and 
sustainable and does not alter the physicochemical or 
physiological properties of the fruit. 

Bio-based ethylene scavenger films were produced 
using paper towel microfibers coated with Zein –  
Artemisia sphaerocephala Krasch. Gum (ASKG) nano- 
particles with core-shell structures were developed via 
electrospraying, and bananas coated with these films 
showed reduced browning, increased firmness, and 
extended shelf life [93]. Novel nanocomposites based 

on polyolefin elastomer were developed, including 
nano-silica and nano clay impregnated with KMnO4. 
In comparison to neat polyolefin films, the resulting 
nanocomposites showed improved mechanical charac- 
teristics, a higher ethylene absorption, and a reduced 
water vapor permeability. Furthermore, the enhanced 
nanocomposite coatings could improve the shelf life 
of bananas by up to 15 days under ambient conditi- 
ons [94]. The application of nanoemulsion coatings 
on apricot fruit had a significant impact on its quality 
characteristics. The nanoemulsion suppressed ascorbic 
acid and carotenoid contents, as well as decay rate, 
weight loss, and antioxidant activity. Similarly, it helped 
reduce the overall number of psychrophilic bacteria, 
yeast, and mold [95].

Nanoemulsions in active-release packaging. Active- 
release packaging systems release the required gases 
into the package environment to preserve product qua- 
lity and freshness and lengthen shelf life. They are  
highly demanded to ensure food quality and safety.  
Active ingredients, such as antioxidants and antimicrobi- 
als, are incorporated into the packaging systems rather 
than added to the food itself so that the migration of 
these compounds can enrich the product. 

There has been a great deal of interest in the systems’ 
antimicrobial and antioxidant activities, as well as 
their water vapor and oxygen barrier properties. For 
example, a neem oil nanoemulsion in a pectin matrix 
exhibited enhanced mechanical attributes, diminished 
stiffness and water vapor permeability, increased 
extensibility, and showed excellent antifungal activity 
against Aspergillus flavus and Penicillium citrinum [97]. 

A clove essential oil nanoemulsion was incorpora- 
ted into a chitosan coating to preserve fresh Tremella 
fuciformis. The coating exhibited high antibacterial 
activity against Burkholderia gladioli and increased 
the shelf-life of T. fuciformis to 9 days [97]. A bilayer 
film was developed based on a sodium alginate/tea tree 
essential oil nanoemulsion and containing TiO2 nano- 
particles to improve the postharvest losses of banana 
fruit and reduce the fungal disease (anthracnose). 
The addition of a specific amount of TiO2 to sodium 
alginate significantly improved the film’s UV blocking, 
water vapor, and oxygen barrier properties [84]. A 
bionanocomposite was developed in which different 
concentrations of a pracaxi oil nanoemulsion were in- 
corporated into a xylitol pectin matrix. This bionano- 
composite efficiently improved the shelf life and stability 
of butter against the oxidation process [85]. Clove- 
and cinnamon-based nanoemulsions were created via 
ultrasonication with varying concentrations of soy 
lecithin as a surfactant. The resulting nanoemulsions 
exhibited antioxidant activity, and the coated muffins 
maintained their texture and had lower weight loss, 
density, and moisture content. Additionally, the 
nanoemulsion-based coating helped extend the shelf life 
of the ingredients by up to 6 days without any quality 
loss, which made them more useful as functional 
components [98]. In another study, films were developed 
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with gelatin-chitosan (4:1) that included nanoemulsions 
loaded with various active substances, such as canola 
oil, tocopherol/cinnamaldehyde, tocopherol/garlic oil,  
tocopherol/cinnamaldehyde, and garlic oil. The nano- 
emulsions were synthesized in a microfluidizer using 
the casting method with biopolymers and glycerol as 
a plasticizer. The films loaded with nanoencapsulated 
active compounds showed strong antioxidant activity 
and were particularly effective against Pseudomonas 
aeruginosa. These active films could be used as packa- 
ging materials to extend the shelf life of foods [61].

Advantages and disadvantages of nanoemulsions 
in packaging. Researchers in the fields of food scien- 
ce, food technology, and food microbiology are all 
concerned about food safety due to the amount of food 
that is wasted after its shelf life has expired [105]. Food 
scientists have been fascinated by the development 
of more efficient nanotechnology-based methods in 
food packaging, along with significant progress in 
biotechnology in a broad range of industries, including 
cosmetic, agricultural, and pharmaceutical fields [54]. 
Many approaches can improve food packaging systems 
and reduce waste. For example, the use of essential 
oils can remove the limitations of conventional food 
packaging while lowering environmental risks [106, 
107]. With the substantial growth of nanotechnology, 
there is an increasing interest in the use of nano- 
emulsion-based packaging systems for the real-time 
monitoring of food products [108]. They provide 
opportunities to streamline targeted compound dist- 
ribution to large surface areas to improve stability, 
biodegradability, anti-oxidation, and antimicrobial qua- 
lities. There is a variety of methods for producing 
nanoemulsions.

In recent years, nanoemulsions have helped in food 
preservation, as well as in the development of stable, 
conventional food packaging systems. In addition, 
some edible coatings based on nanoemulsions con- 
taining essential oils have been created for food 
preservation. For example, a coating for strawberries 
was incorporated with a nanoemulsion based on pul- 
lulan and cinnamon essential. This coating retarded 
senescence and inhibited the decay of strawberry fruits 
during storage more efficiently than the control and pure 
pullulan coatings [105]. Strawberry cartilage and grey 
mold rot were controlled using a nanoemulsion made of 
cinnamon essential oil, which had antifungal properties. 
This nanoemulsion can replace chemical fungicides to 
minimize strawberry fruit post-harvest lesions [109]. 

Edible coatings provide food products with a glossy 
finished surface but one of their major advantages is 
that they are environmentally safe and, therefore, can 
replace plastic packaging to reduce waste and protect 
the environment. Natural coatings provide similar 
protection against oxygen, light, bacteria, and moisture 
as modified-environment packaging does by extending 
the shelf life of food products [110]. Recently developed 
active edible coatings are used to encapsulate active 
compounds in the form of nanoemulsions that play an 

important role in increasing the functionality of edible 
packaging [111]. Nanoemulsions mixed with ground 
meat or fish products help uniformly distribute bioactive 
compounds throughout the product, while dipping or 
coating with nanoemulsions helps in preventing spoi- 
lage [105, 112]. 

Nanoemulsions that contain active components, 
such as antimicrobial agents and antioxidants, are 
incorporated into packaging films and coatings. The 
major application of these packaging systems is to 
protect the food against microbes, oxidation, de- 
naturation, and changes in pH. However, they can 
also help control the release of active ingredients 
into the food. Active agents are incorporated into the 
packaging systems instead of being added directly 
to food. However, when added in a non-encapsulated 
form, these bioactive substances have an adverse effect 
on the optical and transparency properties of the films. 
Several disadvantages can also be seen throughout 
the film’s development such as weak miscibility, phase 
separation, and the chemical or thermal degradation of 
bioactive compounds [113]. Moreover, the synthesis of 
nanoemulsions requires high-tech, expensive equipment, 
which may raise the total cost of the packaging system. 
High concentrations of emulsifiers used to develop 
nanoemulsions can prove to be highly toxic, inflicting 
serious harm to the human body, if consumed, and to 
the environment, if discarded. 

Unless the most stable emulsifying conditions are 
used to develop nanoemulsions, instability in the form of 
flocculation or coalescence often occurs during storage. 
Nanoemulsions that are stored for a long time may 
become unstable, and their stability may also be affected 
by changes in pH and temperature [114]. Some processes 
reduce the interfacial area that occurs in them over time. 
The following processes lead to emulsion breakdown:  
1) flocculation, which is the sticking together of dis- 
persed phase droplets; 2) coalescence, which is the 
fusion of droplets; 3) sedimentation (creaming), which is 
the directed motion of particles (downward or upward); 
and 4) Ostwald ripening, also known as isothermal 
distillation, which is the transfer of material from 
smaller to larger droplets due to the difference in drop 
curvature radii [115, 116].

CONCLUSION
Nanoemulsions as a nanotechnological approach are 

gaining more attention due to their applications in the 
pharmaceutical, cosmetic, and food sectors to improve 
the stability of carrier agents. Their application in packa- 
ging systems is promising in terms of improving the 
packaging’s physical, mechanical, barrier, and other 
functional properties, as well as extending the shelf 
life of fruits, vegetables, and other food categories. 
Furthermore, high-energy emulsification methods for 
preparing nanoemulsions, such as high-pressure homo- 
genizers, ultrasonication, and others, are preferred to  
low-energy emulsification methods. The high-pressure 
homogenizer method has the best potential for impro- 
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ving the stability of nanoemulsions by reducing the 
particle size. In addition, different types of essential 
oils used as active components in nanoemulsion-based 
coatings and films improve their antimicrobial and an- 
tioxidant properties. They also help reduce post-harvest 
losses of fruits and vegetables by retarding their water 
and gas transpiration throughout the storage period. 
However, further research is needed to investigate the  
effects that essential oils may have on the stability of  
nanoemulsions and the retention of their volatile com- 
pounds on the surface of fruits and vegetables.
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