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Abstract.

The dairy industry needs new and more energy-efficient technological procedure for milk pasteurization. This article introduces
a comparative efficiency assessment of various milk pasteurization technologies and electrotechnological means.

The study featured milk, which was heated from 20 to 75°C with a capacity of 1000 kg/h at an estimated power of
58.95 kW. The treatment involved a steam-to-milk pasteurizer with electric indirect or direct heating, an induction pasteu-
rizer, and a thermosiphon pasteurizer with direct or indirect electric heating. The study relied on the methods of energy and
exergy analyses.

The system of steam-to-milk pasteurizer with electric indirect (elemental, induction) or direct (electrode) heating demonstrated
the following indicators: exergy loss — 1.29 kW, power consumption — 71.29 kW, exergy efficiency — 0.99, energy efficiency —
0.827. The thermosiphon pasteurizer with direct or indirect electric heating demonstrated the following properties: exergy
loss — 1.29 kW, power consumption — 60.92 kW, exergy efficiency — 0.99, energy efficiency — 0.9676. The induction pasteurizer
had the least competitive parameters: exergy loss — 10.8 kW, power consumption — 70.43 kW, exergy efficiency — 0.867,
energy efficiency — 0.837.

The thermosiphon pasteurizer with direct or indirect electric heating was able to increase the energy efficiency of milk
pasteurization, while the induction pasteurizer proved to be a promising R&D direction.

Keywords. Pasteurization, dairy products, exergy efficiency, energy efficiency, electrotechnology, direct heating, indirect
heating, induction heating, thermodynamic properties
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AHHOTAIIUSA.

ITonck m obocHOBaHME MEPCHEKTUBHBIX HAIMPABICHUH MOBBIMICHUS YHEProd()(HEKTUBHOCTH TEXHOJOTHYECKUX IMPOIECCOB
MacTEPHU3ALUHU MOJIOKA SBIIAETCS aKTyaJbHOM HayYHO-TEXHUYECKOH mpobnemoid. Llenbro HacTosmIel paboTHI SIBISIOCH MOTYYEeHUE
CPaBHHUTEIBHOMN OLIEHKH () (PEKTHBHOCTH TEXHOJIOTHI H TEXHUYECKUX YCTPOUCTB MACTEPU3alUU MOJIOKA C UCTIOIb30BAHUEM
3JEKTPOTEXHOJIOIMUECKUX CPEICTB.

OOBEKTOM HCCIIeI0BaHNUS SBISIICS Mpoliecc Harpesa Monoka ot 20 xo 75 °C npousBoautensHocThio 1000 Kr/4 mpu pacueTHOH
MomrHOCTH 58,95 kBT B pasHbIX ycTpoilcTBaX TepMHUECKOW 0OpabOTKM MOJOKA: MacTePU3aTOP «BOISHON Map — MOJOKOY»
C WCIIOJIB30BAHUEM 3IEKTPOTEXHOJIOTHUECKHUX CPEACTB HAarpesa, MacTepHU3aTOpP MHAYKIMOHHOTO THMA M TEPMOCH(OHHBIN
MacTepU3aToOp C MCMOJIb30BAHNEM TPSMOTO MIM KOCBEHHOTO 3JIEKTpOHAarpeBa. Mcrmonb30Baal METO/bl SHEPTETHUECKOTO H
9KCEPreTUYECKOro aHalIu3a.

Cucrema «IracTepu3aTop MoJoKa “BOASIHOW Iap — MOJIOKO” € UCIOJIb30BAHUEM 3JIEKTPUUECKOr0 KOCBEHHOTO (C IOMOIIBIO
3JIEMEHTHOTO, HHAYKIIHOHHOTO) WX TIPSIMOTO (JIEKTPOIHOT0) HarpeBa» XapaKTepPH3yeTcsl CIEAYIOINMH IT0Ka3aTeIsIMHU: TOTePH
skcepruu — 1,29 kBT, norpednsiemas momHuocTh — 71,29 kBT, sxceprernuecknii KI1J — 0,99, snepreruueckuit KIT/1 — 0,827.
Jlnist cuCTeMBI «TepMOCH(BOHHBIN TAaCTEPU3aTOP C UCIONB30BAHNEM NPSIMOTO MIIM KOCBEHHOTO JIEKTPOHATPEBa» XapaKTEPHBI:
notepu skceprun — 1,29 kBT, notpedbasemas MmomHocTs — 60,92 kBT, sxceprernueckuit KI1J — 0,99, snepretuueckuit KITJ —
0,9676. HanmeHnee KOHKYpEHTOCIIOCOOHBIMH ITapaMeTpamMu 00JaiaeT nacTepru3aTop MHAYKIMOHHOTO THIIA: TIOTEPH IKCEPTUH —
10,8 kBT, motpebdnsemas mourHocth — 70,43 kBT, skcepreruueckuit KI1J] — 0,867, sneprernyeckuii KITJ] — 0,837.

J1nst moBBITIIEHHS SHEPTrodPEKTUBHOCTH Mpoliecca MacTepH3aIH MOJIOKA IIEJIeCO00pa3HO UCIIOI30BaTh CUCTEMY «ITaCTEpPU3aToOp
TEPMOCHU(OHHOTO THIIA C UCIOIH30BAHMEM IIPSIMOTO MM KOCBEHHOT'O 3JICKTpOHAarpeBa». [IepCIeKTHBHBIM HalpaBICHHEM
JaNbHEHIINX MCCIeT0BAHUH CIeLyeT CYUTATh COBEPIICHCTBOBAHNE CUCTEMBI THIIA «IIACTEPHU3aTOP HHAYKIHOHHOTO THIIAY.

Karouessle ciioBa. [TacTepusanus, MOJIOYHBIE IPOIYKTHI, dKcepreTudeckas 3G pekTHBHOCTD, dHEepreTudeckas 3G pekTHBHOCTD,
JJIEKTPOTEXHOJIOT L, IPSIMON HarpeB, KOCBEHHBIH HAarpeB, MHIYKIMOHHBIH HarpeB, TEPMOJUHAMUYECKHE CBOHCTBA

Jas uutupoBanus: baraes A. A., booposckuii C. O. DHepreTnueckas U SKCepreTHIecKast OIeHKa JIEKTPOTEXHOTOTHISCKIX
CpPEeACTB TepMHUECKOW 00paboTKu Mooka // TeXHUKa U TEeXHOJOTHS MUIIEeBBIX mpousBoacT. 2023. T. 53. Ne 2. C. 272-280.
(Ha anru.). https://doi.org/10.21603/2074-9414-2023-2-2428

Introduction treatment also means that none of these pathogens

The current development trends are such that food is able to form spores in milk.
enterprises are increasing in capacity but decreasing in Pasteurizers with water or vapor of varying saturation
number. As a result, it takes longer to ship dairy raw degrees as an intermediate heat carrier is currently the
materials from farms to shops or processing facilities, most popular commercial type [2, 3]. Water heating and
and milk cooling technologies often fail to meet this vaporization are non-specific processes that can be
new challenge. provided by such electrotechnological means as indirect

The primary milk processing destroys pathoge- (elemental, induction) or direct (electrode) heating.
nic microorganisms, e.g., Escherichia coli, typhoid The dairy industry knows other antibacterial milk
pathogens, tuberculosis, etc. It also destroys enzyme treatment technologies that do not involve thermal
systems, e.g., phosphatase: the absence of phospha- methods, e.g., ultrasound treatment, infrared and ultra-

tase is a marker of sufficient disinfection [1]. A proper violet irradiation, solar energy, microwave currents,
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hydrodynamic, etc. [4—-13]. These technologies still
remain R&D projects and have not entered commercial
dairy production.

Therefore, thermal treatment remains the only
technology that ensures the safety of dairy products in
terms of pathogenic microorganisms and enzyme systems.
In fact, heat treatment is a combination of temperature and
exposure time that destroys pathogenic microorganisms
and enzyme systems in milk. Heat treatment modes
in dairy production differ in temperature modes and
heating time. Of all the methods listed in [1], we used
the so-called high-temperature short-term pasteurization.
It presupposes a temperature of 72—-75°C for 15-20 s.

Induction heating is a promising thermal processing
technology in food production. Its energy efficiency is
as high as 95-99%, but the objectivity of this method
is yet to be confirmed [14-18].

A literature review showed that the number of existing
and effective milk pasteurization technologies is quite
large, but food producers still need objective methods
for assessing their energy efficiency and improvement
prospects.

Modern approaches to efficiency tests of technological
processes and systems rely on the efficiency criterion,
energy efficiency, and exergy efficiency [19].

Exergy efficiency is based on the second law of
thermodynamics. The thermodynamic analysis involves
a system of equations for the balance of mass, energy,
entropy, and exergy [20]. This study concentrated on
the energy and exergy balance equations.

Heating processes are irreversible. The first and
second laws of thermodynamics for irreversible systems
can be represented as four characteristic thermodynamic
functions that are irreducible to each other. One of
them is the Gibbs energy (isobaric-isothermal potential)
calculated as G = h — T x S, where G is the Gibbs energy,
h is the enthalpy, T is the temperature, and S is entropy.

The Gibbs energy equation was used to calculate
specific exergy y in [20, 21]:

v =(h=h)-T,(S-5,) (1)
where h, S are enthalpy and entropy of the initial state
of substances (base for comparison) at initial temperature
T,and initial pressure P,

According to [20], the system exergy is calculated
as follows:

EX:mxyfzmx[(h—ho)—YB(S—So)] 2

The overall balance of exergy is estimated as

follows [20]:

AE, =Y EY =Y EX"

where E)I(N is the sum of exergies at the input to
the system elements; ZE)?UTis the sum of exergies

3)
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at the output of the elements of the system or the
total exergy production.

Exergy efficiency is the ratio of exergy output
(total exergy production) to exergy input (total energy
consumed). Therefore, the exergy efficiency, %, is
calculated as follows:

our
AE
==X 4100=|1-—%_|x100 4
Ten EX Y EY @

A greater exergy efficiency 7, is the condition for
increasing the efficiency of compared processes or
systems.

Energy efficiency is based on the first law of
thermodynamics. Efficiency factor #, serves as the
simplest and most common assessment of energy
efficiency. It is calculated as the ratio of the required
useful power for heating milk P to the power consumed
by the electrotechnological installation P, %:

n, = L x100

ETI

(&)

Efficiency can be increased by exceeding energy
efficiency 7, of the process or system in question.

The research objective was to develop an assessment
method based on energy and exergy analysis to compare
the effectiveness of technologies and electrotechnolo-
gical devices.

Study objects and methods

The research relied on the methods of energy
and exergy analyses.

It involved exergy and energy processes based
on the first and second laws of thermodynamics that
occur in electrotechnologi cal devices used for the
thermal treatment of liquid foods. The first device was
a steam-to-milk pasteurizer with electrical indirect
(with heating elements, induction) or direct (electrode)
heating (Fig. 1a). The second device was an induction
type pasteurizer (Fig. 1b). The third one was a thermo-
siphon pasteurizer with one of the above methods
(Fig. 1c).

The analysis of the exergy and energy efficiency
was correct due to the shared initial data reported
in [22], which defined the hydro- and thermodynamic
characteristics of heat exchangers for heating milk:
milk production G = 1000 kg/h = 0.27 kg/s = 0.96 m*/h,
heating pipe wall temperature 7 = 100°C, milk input
temperature 7, = 20°C, output milk temperature
T A =75°C.

If the specific heat capacity of milk ¢ is
3.97 kJ/(kg-deg), then the useful heat flow, kW, and
the power of the electrothermal installation are:

P, =0=Gex(T,, ~T,)=5895 (6)



bazaes A. A. [u Op.] Texnuxa u mexnonoeus nuwgegvix npouzeoocms. 2023. T. 53. Ne 2. C. 272-280

1
Milk

P
5
Water 3—é Vi ) Condensate
Steam
2
Milk
a
Pd
OO0\
/
—) 2
Milk Milk
00000
b
l1
Pcl Milk
[]
4
Condensate || 1 11
Steam

2
Milk
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C

Figure 1. Milk pasteurization systems: a — a steam-to-milk pasteurizer; b — an induction pasteurizer;
¢ — a thermosiphon pasteurizer with direct/indirect electric heating

Pucynok 1. CxeMbI cuCTeM IacTepU3AHK MOJOKA: a — IACTEPU3aTOP MOJIOKA THIIA «BOASHOU Iap — MOIOKO»; b — mactepuszatop
MHJYKI[MOHHOTO THIIA; C — HaCTEPU3aTOP TEPMOCU(POHHOIO TUIIA C UCIIOIb30BAHUEM IIPSIMOTO MJIM KOCBECHHOTO 3JIEKTPOHArpeBa

Wall temperature of the heat exchange surface
T = 100°C is limited by the requirements of thermal
stability because raw milk must withstand heat treat-
ment without protein coagulation (denaturation) [23].
It also depends on the presence of thermolabile proteins
in milk.

We investigated the dependence of the coefficients
of exergy and energy efficiency of electrotechnological
milk-heating devices at given performance values for
milk and heat exchanger geometry. The list of systems
included a steam-to-milk pasteurizer with electric in-
direct or direct heating, an induction pasteurizer, and
a thermosiphon pasteurizer with direct or indirect
electric heating.
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The research involved the following assumptions:
— We did not take into account the heat losses to the
environment;
— The operation mode was considered to be in a steady
state;
— We did not calculate the pressure drops in the heat
exchangers and pipelines; and
— Kinetic, potential, and chemical energies were neg-
lected.

Results and discussion
The thermodynamic properties of water and

water vapor, i.e., enthalpy, entropy, specific heat of
vaporization, etc., were known.
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The enthalpy of substance / is the product of the
specific heat capacity ¢ and temperature 7: & = cT.

Figure la shows the circuit for this type of the
steam-to-milk pasteurizer with electrical indirect (using
elemental, induction) or direct (electrode) heating.
It is a steam generator with an electrode, elemental,
or induction heater as energy source.

Steam temperature ¢ , °C, at working pressure, MPa:

P,=0.13-0.15
127 =107.02
127 =120
Medium steam temperature ¢ , °C:
t0,13 +t0‘15
t, =+—=—=110 7
w= ™)
Heating steam consumption m_, kg/s, given that (6):
0
m, =————=0.0273 8
1) (®)

where Q is the useful heat flow and power of the
electrothermal installation, kW; £ is the steam enthalpy,
h,=2117912 J/kg; h,_ is the enthalpy of the condensate,
h=461696.1 J/kg.

According to the first law of thermodynamics, to
ensure milk productivity G = 1000 kg/h = 0.27 kg/s
when it is heated from 7, = 20°C at the input to
T , =75°C at the output, the procedure requires steam
flow m = 0.0273 kg/s.

The resulting water vapor condenses on the heat
exchange surface of pipes or heat exchanger planes
and transfers heat to the heated medium. Water enters
the steam generator from an external source.

We calculated the exergy parameters using the
thermodynamic parameters of water, steam, conden-
sate, and milk according to formulae (1) and (2)
(Table 1).

We calculated the electrical energy cost used to
produce steam P,, kW, according to Table 1:

P, =m, x(h—h,)=0.0273x(2693.3-83.93) = 71.29 (9)

The data in Table 1 made it possible to determine
the sum of exergies at the input to the elements of the
system E.', kW, in line with the diagram represented in
Fig. 1a. The indices of the constituent exergies followed
the order in Table 1:

EY=P,+E,,+E,  +E, =15555 (10)

The sum of exergies at the output to the elements
of the system ZE)?UT, kW, looked as follows:

Y EYT =E s+ Ey +Ey, =154.26 (11)

According to (4), exergy loss AE,, kW, was calcula-

ted as

AE, =Y EY - EX =129 (12)

Then, the exergy efficiency, %, took the form of

our
ﬁxlOO:(l—&]XIOO:% (13)

¥ YEY
As a result, the equation for the energy efficiency
looked like this, %:

Puse XlOO :ﬁxloo = 82.7
71.29

ETI

773)( =

New = (14)

Figure 1b illustrates the scheme of the induction
pasteurizer. Such factors as induction heating of ferro-
magnets, optimal eclectromagnetic field frequency,
inductors, loading geometry, and heating time were
known and had no direct relation to the induction
heating of foodstuffs. Few publications [14—18] on
induction heating in the food industry feature both
advantages and disadvantages of the heating technology
in question.

As in Table 1, the energy used to heat milk P

s KW,
was defined as follows:

Table 1. Thermodynamic properties of liquids and calculated exergy indicators in the steam-to-milk pasteurizer
with electric indirect (tubular electric heaters, induction) or direct (electrode) heating

Tabnuna 1. TepMoanHAMUYECKHE CBOMCTBA )KUIKOCTEH M PE3yJIbTAThl pacyeTa MoKa3aTesei IKCEPrul B CUCTEME «I1acTePU3aTOP MOJIOKa
TUNa “BOJASHOMN Map — MOJIOKO” ¢ MCIOJIb30BaHHEM DJIEKTPUUECKOT0 KOCBEHHOTO (C MOMOIIBIO 3JIEMEHTHOTO, HHYKIIHOHHOI0)
WJIN TPSIMOTO (2JIEKTPOIHOTO) HArpeBay

K

kJ

kJ

No. Medium r.K n ’ m,ng w=h-h,~L | E=mxy,kW
°C kg kg x K s kg

0 Water 283/10 42.07 0.150 0.0273 - -

0’ Milk 283/10 38.80 3.880 0.2700 - -

1 Milk 293/20 78.80 3.940 0.2700 40.00 10.80

2 Milk 348/75 299.63 3.995 0.2700 260.85 70.43

4 Water 293/20 83.96 0.296 0.0273 41.89 1.14

5 Steam 383/110 2693.30 7.244 0.0273 2651.23 72.38

6 Condensate 383/110 461.69 1.419 0.0273 419.62 11.45
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Table 2. Thermodynamic properties of liquids and calculated exergy indicators in the induction pasteurizer

Ta6Jmua 2. TepMOZ[I/IHaMI/I‘ICCKI/IC CBOMCTBA KUJIKOCTEH U PpE3yabTaAThI pacueTa TmoKazarenei DKCEPruu B CUCTEME
«MacTepu3aTop MHAYKIIMOHHOTO TUIIA

No. Medium T,£ h,ﬁ s, kJ m’ILg w=h —ho,ﬂ E =mxy, kW
°C kg kg x K s kg

0 Water 283/10 42.07 0.150 0.0273 - -

0’ Milk 283/10 38.80 3.880 0.2700 - —

1 Milk 293/20 78.80 3.940 0.2700 40.00 10.80

2 Milk 348/75 299.63 3.995 0.2700 260.85 70.43

Table 3. Thermodynamic properties of liquids and calculated exergy indicators in the thermosiphon pasteurizer

with direct or indirect electric heating

Ta6HI/[LIa 3. TepMOZ[I/IHaMI/I‘{eCKI/IC CBOMCTBA KUJKOCTEH U PE3YyIbTATHI pacucTa MmoKazarenei DOKCEPruu B CUCTEME

«TacTepHu3aTop TEPMOCH(GOHHOTO TUIIA C UCIIOIb30BAHUEM IMPSIMOTO HMIIM KOCBEHHOT'O 3JIEKTPOHATPEBA»

No. Medium T,£ h,ﬁ s kJ m’k7g w=h _ho»ﬂ E =mx y, kW
°C kg kg x K s kg

0 Water 283/10 42.07 0.150 0.0273 - -

0’ Milk 283/10 38.80 3.830 0.2700 — —

1 Milk 293/20 78.80 3.940 0.2700 40.00 10.80

2 Milk 348/75 299.63 3.995 0.2700 260.85 70.43

4 Water 293/20 83.96 0.296 0.0273 41.89 1.14

5 Steam 383/110 2693.30 7.244 0.0273 2651.23 72.38

6 Condensate 383/110 461.69 1.419 0.0273 419.62 11.45

P, =Gx(hy—hy)=00273x(299.65-38.8) =70.43  (15)

We obtained the following results for the sum of exer-
gies at the input to the elements of the system EL’, kW,

EY=P,+E, =81.23 (16)
and for the sum at the output LE7"", kW:
YEQ =E,, =7043 (17)
The indices for the constituent exergies follow
the order in Table 1 while Table 2 summarizes the
calculation results.
As in (4), exergy loss AE,, kW was calculated as:

AE, =Y EY-YE% =10.8 (18)

The equation for the exergy efficiency, %, looked
as follows:

zEgUT AE
M, ==X x100=|1-——%_|x100=86.7  (19)
TEY TEy

The energy efficiency, %, was calculated based on
the equation below:

Ny =2 %100 = 25924100 =837 (20)
7043

ETI
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Figure 1c visualizes a diagram for the thermosyphon
pasteurizer with direct or indirect electrical heating.
The thermosyphon consists of an evaporator filled
with a certain amount of intermediate heat carrier, e.g.,
water, which undergoes a phase transformation into
water vapor as a result of external thermal action, i.e.,
electrode, elemental, or induction heating. The vapor
condenses on the heat exchange surface as a result of
the heat transfer process through the heat transfer
surface, thus transferring the thermal energy to the
heated substance. The temperature of the condensate is
the same as the temperature of the water vapor with a
lower enthalpy. The thermosiphon has a highly effective
thermal conductivity.

Using Table 1, we calculated the energy used to
heat milk P,, kW:

P, =my x(h—hy)=0.0273x(2693.3-461.69) = 60.92 (1)
The data summed up in Table 1 made it possible
to use the scheme in Fig. la in order to determine the
sum of exergies at the input to the elements of the
system E;, kW:
EY =P, +E+E,+E, =1555. (22)
The equation for > EQT, kW, looked as follows:

SEMT =E, +E+E,,=1542 (23)
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Table 4. Calculated exergy and energy characteristics of milk pasteurization systems

Ta6JII/ILIa 4. Pe3y.TII)TaTI)I pacye€Ta dSKCEPreTUICCKUX U SHEPIreTUICCKUX XapaKTEPUCTUK CUCTEM MACTEPU3aALIUN MOJIOKaA

EN kW EQT kW AE,, kW P, kW Tex Men
1 155.55 154.26 1.29 58.95 0.99 0.827
II 81.23 70.43 10.80 58.95 0.867 0.837
111 155.55 154.26 1.29 58.95 0.99 0.9676

I — a steam-to-milk pasteurizer with electric indirect (tubular electric heaters, induction) or direct (electrode) heating; II — an induction
pasteurizer; III — a thermosiphon pasteurizer with direct or indirect electric heating.

I — macrepu3aTop MOJIOKA THIIA «BOJSHOIN Hap — MOJOKO» C HCHOJIB30BAaHHEM JJIEKTPHYCCKOrO KOCBEHHOTrO (C ITOMOIIBIO DJIEMEHTHOTO,
HMHIYKIIMOHHOT0) WJIM NPSIMOTO (3JeKTpoaHoro) Harpesa; 1l — mactepusarop nnaykunonsoro tuna; I1I — macrepuzarop TepmocudoHHOTO

THIIA C UCIIOJIB30BAHUEM MPAMOIO MJIM KOCBEHHOI'O 3JICKTpOHArpeBa.

99.00 99.00 96.76

100 -
86.70 82.70 83.70

80 -

60 -

. 0,
”ex’ ”en’ %o

20 A

Exergy efticiency

Energy efticiency

I — a water steam-to-milk pasteurizer with electric direct or indirect
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The indices of the constituent exergies follow the
order in Table 1 while Table 3 sums up the calculations.

As in (4), exergy loss AE,, kW, was calculated
as follows:

AE, =Y Ey -YE" =126 (24)
In the steady state, this heating technology does not
waste the energy on heating water with a temperature
of 20°C. Instead, it heats the condensate with a steam
temperature of 110°C, which increases the energy
efficiency of the process.
Therefore, the equation for exergy efficiency, %,
looked like this:

SEM AE
= x100=|1- X_1x100=99 25

The equation for energy efficiency, %, took the
following form:

Doy =2 %100 = 58'23 x100 =96.76 (26)

ETI

Table 4 and Fig. 2 show the calculation results. It
can be seen that the steam-to-milk pasteurizer (I) and
the thermosiphon pasteurizer (III) had the same exergy

278

efficiency whereas the induction pasteurizer (II) had
a lower exergy efficiency.

The thermosyphon pasteurizer with direct or indirect
electric heating (III) demonstrated the highest energy
and exergy efficiency.

This heating technology revealed the following
feature: in a steady state, the energy went not to heating
the water with a temperature of 20°C to vaporize it but
to the condensate with a steam temperature of 110°C.
As a result, the process was more energy-efficient.

Conclusion

The steam-to-milk pasteurizer system with electrical
indirect (elemental, induction) or direct (electrode)
heating had the following indicators: exergy loss —
1.29 kW, power consumption — 71.29 kW, exergy ef-
ficiency — 0.99, energy efficiency — 0.827.

The thermosiphon pasteurizer with direct or indirect
electric heating demonstrated the following results:
exergy loss — 1.29 kW, power consumption — 60.92 kW,
exergy efficiency — 0.99, energy efficiency — 0.9676.

The thermosiphon pasteurizer with direct or indirect
electric heating had the highest energy efficiency in terms
of energy and exergy analysis. It owed its advantage to
the closed vaporization cycle, where the steam turned
into condensate with the same temperature.

The induction pasteurizer had the least competitive
parameters: exergy loss — 10.8 kW, power consump-
tion — 70.43 kW, exergy efficiency — 0.867, energy
efficiency — 0.837.

The steam-to-milk pasteurizer with electrical indirect
(elemental, induction) or direct (electrode) heating and
the thermosyphon pasteurizer with direct or indirect
electric heating have almost exhausted their potential for
further improvement. However, the induction pasteurizer
still has good R&D prospects.
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